Лекция 13

Ilya Yaroshevskiy

24 ноября

Содержание

1	Алт	гернантные коды	1
	1.1	Коды Гоппы	2
	1.2	Криптосистема Мак-Элиса	2

1 Алтернантные коды

Теорема 1.1. $= (0, \ldots, c_{n-1})$ – кодовое слово кода Рида-Соломона над GF(q) в узком смысле ттогда, когда $c_i = f(\alpha_i), 0 \le i < n$ (т.е. c = ev(f)), где $\deg f(x) < k, f(x) \in GF(q)[x]$

Доказательство. Доделать

Определение. n, k, n-k+1 кодом Рида-Соломона называется множество векторов $c=(c_0, \ldots, c_{n-1}),$ где $c_i=f(a_i), \deg f(x) < k, f(x) \in GF(q)[x], a_i \in GF(q)$ – различные значения (локаторы)

Определение. Обобщенным (n,k,d=n-k+1) кодом Рида-Соломона GRS(n,k,a,u) называется множество векторов $(c_0u_0,\ldots,c_{n-1}u_{n-1})$, где (c_0,\ldots,c_{n-1}) – кодовое слово (n,k,n-k+1) кода Рида-Соломона (т.е. $c_i=f(a_i),\deg f(x)< k,a_i$ – различные), и u_0,\ldots,u_{n-1} – ненулевые константы

Определение. Альтернантным кодом длины n над полем GF(q) называется код $\mathcal{A}(n,r,a,u)$ с проверочной матрицей

$$H = \begin{pmatrix} a_0^0 & a_1^0 & \dots & a_{n-1}^0 \\ a_0^1 & a_1^1 & \dots & a_{n-1}^1 \\ \vdots & \vdots & \ddots & \vdots \\ a_0^{r-1} & a_1^{r-1} & \dots & a_{n-1}^{r-1} \end{pmatrix} (u_0, u_1, \dots, u_{n-1}) = (H_{i,j})$$

где $a_i \in GF(q^m)$ – различные элементы, $u_i \in GF(q^m) \setminus 0$

Замечание. Доделать

- Минимальное расстояние $d \ge r + 1$
- Размерность $n-r \ge k \ge n-mr$

Теорема 1.2. Пусть m|(n-h). Существует альтернантный $(n,k\geq h,d\geq \delta)$ код над GF(q) такой, что

$$\sum_{i=1}^{\delta-1} (q-1)^i C_n^i < (q^m - 1)^{\frac{n-h}{m}}$$

Замечание.

• Рассмотрим $\mathcal{A}(n,(n-h)/m,a,u) = GRS(n,n-(n-h)/m,a,v) \cap GF(q)^n$

Доделать

Общее количество альтернантных кодом больше чем количество плохих альтернантных кодов, значит есть хорошие альтернантные коды

Замечание.

$$\sum_{i=0}^{d-2} C_{n-1}^i (q-1)^i < \underbrace{\sum_{i=0}^{d-1} C_n^i (q-1)^i < (q^m-1)^{\frac{n-h}{m}}}_{\text{A transport who is the property of the property of$$

1.1 Коды Гоппы

Определение. Пусть задан многочлен (многочлен Гоппы) $G(x) \in GF(q^m)[x]$ и $a_0, \ldots, a_{n-1} \in GF(q^m)$, причем $G(a_i) \neq 0$. Кодом Гоппы называется множество $(c_0, \ldots, c_{n-1}) \in GF(q)^n$.

$$\sum_{i=0}^{n-1} \frac{c_i}{x - a_i} \equiv 0 \mod G(x)$$

Утверждение. Коды Гоппы являются альтернантными

Доказательство. Доделать

Замечание. Двоичные коды Гоппы Доделать

1.2 Криптосистема Мак-Элиса

Доделать