Лекция 1

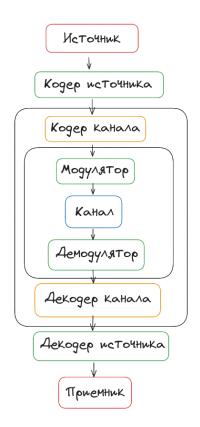
Ilya Yaroshevskiy

2 сентября

Содержание

1	Вве	едение
	1.1	Модулятор
	1.2	Приемник
2	Пон	нятие кода
	2.1	Теорема кодирование
	2.2	Пропускные способности каналов
	2.3	Мягкое и жесткое декодирование
	2.4	Спектральная эффективность

1 Введение



1.1 Модулятор

Определение. Передаваемый сигнал равен

$$x(t) = \sum_{i} S_{x_i}(t - iT)$$

, где x_i – передаваемые символы, T – продолжительность символьного интервала

Пример. М-ичная амплитудно-импульсная модуляция

$$S_i(t) = \alpha(2i + 1 - M)g(t)\sin(2\pi ft)$$

, где g(t) — сигнальный импульс (например, единичный импульс продолжительностью T), f — несущая частота, α — коэффицент, определяющий энергию передаваемого сигнала

Пример. Модель канала в непрервном времени $y(t) = x(t) + \eta(t)$

Пример. Модель канала в дискретном времени $y_i = (2x_i + 1 - M) + \eta_i$

Определение. $\eta_i \sim \mathcal{N}(0,\sigma^2)$ – канал с аддитивным белым гауссовским шумом

1.2 Приемник

Замечание. Приемник наблюдает на выходе канала вектор $y=(y_0 \dots y_{n-1})$. Канал характеризуется условным распределением $p_{Y|X}(y|x)$, где X,Y – случайные величины, соответствующие векторам переданных и принятых символов. Если выход канала – непрерывная случайная величина, $p_{Y|X}(y|x)$ – условная плотность вероятности. Приемник реализует некоторое разбиение векторного пространства на решающие области $R_x: y \in R_x \implies \hat{x} = x$

Определение. Вероятность ошибки

$$\begin{split} P_{e} &= \int_{\mathbb{R}^{N}} p_{e}(y) p_{Y}(y) dy = \sum_{x} \int_{R_{x}} p_{e}(y) p_{Y}(y) dy = \\ &= \sum_{x} \int_{R_{x}} (1 - p_{X|Y}(x|y)) p_{Y}(y) dy = 1 - \sum_{x} \int_{R_{x}} p_{X|Y}(x|y) p_{Y}(y) dy \end{split}$$

Хотим минимизировать P_e :

Определение. Критерий максимума апостериорной вероятности (**критерий идеального на-блюдателя**)

$$R_x = \{y | p_{X|Y}(x|y) > p_{X|Y}(x'|y), x' \neq x\} = \{y | P_X(x) p_{Y|X}(y|x) > P_X(x') p_{Y|X}(y|x'), x' \neq x\}$$

Определение. Критерий максимума правдоподобия

$$R_x = \{y | p_{Y|X}(y|x) > p_{Y|X}(y|x'), x' \neq x\}$$

Пример. 2-ичная амплитудно-импульсная модуляция (2-AM). Пусть $y_i = \alpha(2x_i-1) + \eta_i, \eta_i \sim \mathcal{N}(0,\sigma^2), x_i \in \{0,1\}$. Тогда:

$$p_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\alpha(2x-1))^2}{2\sigma^2}}$$

Применим критерий максимального правдоподобия:

$$R_0 = \{y|y < 0\}, R_1 = \{y|y \ge 0\}$$

Вычислим вероятность ошибки:

$$P_{e} = P_{X}(0)P\{Y \ge 0 | X = 0\} + P_{X}(1)P\{Y < 0 | X = 1\} = \dots = \int_{\frac{\alpha}{\sigma}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^{2}}{2\sigma^{2}}} dy = Q\left(\frac{\alpha}{\sigma}\right) = \frac{1}{2} \operatorname{erfc}\left(\frac{\alpha}{\sqrt{2\sigma}}\right)$$

Замечание. Значение сигнала это обычно уровень напряжения. Как мы знаем мощность $P=\frac{U^2}{R}$. Мы хотим минимизировать мощность, чтобы экономить электроэнергию. Мощность сигнала суть случайная величина с матожиданием, пропорциональным $E_S=\alpha^2$. Мощность белого шума не зависит от частоты и пропорциональна $\sigma^2=\frac{N_0}{2}$. Если же шум зависит от частоты, то он называется розовым или голубым.

Соотношение мощностей сигнал/шум на символ это $\frac{E_S}{N_0}$, обычно измеряемое в децибелах, т.е. $10\log_{10}\frac{E_S}{N_0}$. Однако нас интересуют не символы, а биты и тогда соотношение сигнал/шум на бит это $\frac{E_S}{RN_0}$, где R – количество бит информации, представленных одним символом.

2 Понятие кода

Определение. Код – множество допустимых последовательностей символов алфавита X, как конечных так и бесконечных

 $\it Замечание.$ На практике ограничиваются послеловательностями длины $\it n$

 $\it Замечание.$ Не всякая последовательность символов из $\it X$ является кодовой

Определение. Кодер – устройство, реализующее отображение информационных последовательностей символов алфавита B в кодовые

Замечание. Различным информационным последовательностям сопоставляются разсличные кодовые последовательности

Определение. Скорость кода – отношение длин информационной и кодовой последовательностей

Определение. Декодер – устройство, восстанавливающее по принятой последовательности символов *наиболее вероятную* соответствующую ей кодовую (или информационную) последовательность

Замечание. Под наиболее вероятным подразумевается критерии иделального наблюдателя и максимального правдоподобия

2.1 Теорема кодирование

Пусть для передачи используеся код $\mathcal{C} \subset X^n$ длины n, состоящий из M кодовых слов, выбираемых с одинаковой вероятностью

Теорема 2.1 (Обратная). Для дискретного постоянного канала с пропускной способностью C для любого $\delta>0$ существует $\varepsilon>0$ такое, что для любого кода со скоростью $R>C+\delta$ средняя вероятность ошибки $\bar{P}_{\varepsilon}>\varepsilon$

Замечание. Постоянный канал – статистические свойства со временем не меняются Дискретный канал – вход и выход дискретные

3амечание. Здесь говориться о том канал характеризуется величиной C. Если попробуем передать данные с большей пропускной способностью, то вероятность ошибки будет ограничена снизу.

Теорема 2.2 (Прямая). Для дискретного постоянного канала с пропускной способностью C для любых $\varepsilon, \delta > 0$ существует достаточно большое число $n_0 > 0$, такое что для всех натуральных $n \geq n_0$ существует код длиной n со скоростью $R \geq C - \delta$, средняя вероятность ошибки которого $P_\varepsilon \leq \varepsilon$

2.2 Пропускные способности каналов

Определение. Двоично симметричный канал: $X,Y \in \{0,1\}, p_{Y|X}(y|x) = \begin{cases} p, & y \neq x \\ 1-p, & y=x \end{cases}$

$$C_{\text{BSC}} = 1 + p \log_2 p + (1 - p) \log_2 (1 - p)$$

Определение. Идеальный часточно ограниченный гауссовский канал $y(t) = x(t) + \eta(t), \, \eta(t)$ – гауссовский случайный процесс, спектральная плотность мощности которого равна $S(f) = \begin{cases} \frac{N_0}{2}, & -W < f < W \\ 0 & \text{иначе} \end{cases}$

$$C_{\text{AWGN}} = W \log_2 \left(1 + \frac{E_s}{W N_0} \right)$$

2.3 Мягкое и жесткое декодирование

Канал с аддитивным белым гауссовским шумом: $y_i = (2x_i - 1) + \eta_i, x_i \in \{0, 1\}$

Определение. Мягкое декодирование: декодер непосредственно использует y_i

Определение. Жесткое декодирование: декодер использует оценки \hat{x}_i

2.4 Спектральная эффективность

Определение. Спектральная эффективность кодирования $\beta = \frac{R}{W} \left[\frac{\mathsf{б}_{\mathsf{ИТ}}}{\mathsf{c}\Gamma_{\mathsf{\Pi}}} \right]$