Лекция 12

Ilya Yaroshevskiy 30 ноября

Содержание

1	Парадокс Жирара]
	1.1 Обобщение λ-куба	1
2	Парадок Бурали-Форте	2

1 Парадокс Жирара

 λ -куб не такой вырахительный как хотелось бы

Примечание. Топология: $\Omega \subseteq \mathcal{P}(X)$

- $\mathcal{P}(X)$ множество всех функций типа X -> *
- $x \in \mathcal{P}(X)$, x : X -> *

Топология: (X -> *) -> * — про подмножество говорим, подходит ли оно $\ensuremath{\Pi}\xspace$ римечание.

0: Все значения (λ-терм)
 1: Типы (утверждения) *
 2: Рода * → *
 3: Сорта □

1.1 Обобщение λ -куба

Примечание. λ HOL:

- $\bullet *, \square, \triangle$
- Правила: $(*,*), (\square, \square), (\square,*)$.

Если добавим $(\triangle, *)$, все останется хорошо. Там живет: Πx^{\square} . значения. Если добавим (\triangle, \square) , получим неконсистентность.

Система
$$U$$

$$\underbrace{\left(*,*\right) \left(\square,\square\right) \left(\square,*\right) \left(\triangle,\square\right)}_{\mathbf{C}\mathbf{U}\mathbf{C}\mathbf{T}\mathbf{e}\mathbf{Ma}} \ U^{-}$$

И U и U^- неконсистентны.

 Π римечание. $\mathcal{P}(X)$ — тип всех функций $X \to *$, тогда топология:

$$\underbrace{X \to *}_{\square} \to *$$

Заметим, что это на самом деле квантор всеобщности:

$$\forall \alpha^{\tau}. \varphi(\alpha) = A(\underset{*}{\tau}, \underset{\square}{\varphi})^{\square}$$

$$S \;:\; A(\tau) \approx \overbrace{(\tau \to *)}^{\varphi} \to *$$

 φ — обобщенная функция отображающая значения типа в утверждение, квантор всеобщности — штука, которая отображает такую фукнцию в утверждение: истина эта функция или ложна.

Примечание. В системе U можем написать что-то вроде Y-комбинатора — $F \equiv \lambda$ -выражение, которое не заканчивается, но $\vdash F : \varphi, \varphi$ - любой. Значит любой тип обитаем

2 Парадок Бурали-Форте

1.

Утверждение. Не существует максиамльного ординала (множества всех ординалов)

Определение. Ординал — транзитивное, вполне упорядоченное множество

S — множество всех ординалов, Тогда оно $\in S$?

2. Фундированное множество X — множество, где нет бесконечной цепочки \in

$$\underbrace{X\ni x_1\ni x_2\ni\cdots\ni x_n}_{\text{конечное }n}$$

Множество всех фундированных множеств — фундированное

3. Множество всех множеств

$$\sigma: X \to \mathcal{P}X$$
$$\tau: \mathcal{P}X \to X$$

- $\sigma X \{a | a \in X\}$ начальный отрезок до X
- τX ординал, соответствующий X

$$\sigma\tau X=\{\tau\sigma\alpha|\alpha\in X\}$$

$$\sigma\tau X=\{\beta|\beta<\tau X\}=\{\beta|\beta=\tau\sigma\alpha$$
 для $\alpha\in Z\}$

Определение. Парадоксальный универсум

- $\sigma: U \to \mathcal{P}U$
- $\tau: \mathcal{P}U \to U$

Если для всех $X \in \mathcal{P}U$

$$\sigma \tau X = \{ \tau \sigma x | x \in X \}$$

Определение. $y \in \sigma x$, то y < x

Примечание. $\tau \sigma y < \tau \sigma x$

X — **индуктивен**, если каждый x: y < x, то $y \in X$, тогда $x \in X$

 $\Pi pumeчaнue.$ Трансфинитная индукция — если утверждение истнинно для всех ординалов меньше $x \implies$ истинно для ординалов x, то оно истинно везде

X — фундировано, если x принадлежит всем индуктивным множествам

Определение. $\Omega = \tau\{x|x-$ фундировано $\}$

Утверждение. $\Omega - \phi y n \partial u p o b a n o$

Утверждение. $\Omega - ne \ \phi yn \partial u posano$

Примечание. Как это выразить в U?

- \bullet $\mathcal{P}X$: $X \rightarrow *$
- \bullet U : \square
- $\sigma: U \to \mathcal{P}U$
- $\tau : \mathcal{P}U \to U$
- $o: \forall S^{\mathcal{P}U}.\sigma(\tau(x)) = \lambda u^U.\exists x^U.(Sx)\& u = \tau(\sigma(x))$