Лекция 11

Ilya Yaroshevskiy

23 ноября

Содержание

1 Язык 1.1 Пред	икативность	1
1 Язык		
Примечание.	Мы находимся где-то в λC	
\func id (x	: \Type) : \Type = x	_
К какой част	и λ-куба относится id: * -> *	
\func idid =	> id id нельзя	_
Но такое мы	можем написать:	
	: \Type) : (x -> x) => \lam a => a => id2 (\Type -> \Type) (id2 \Type)	_
Получается ч	TO \Type -> \Type : \Type	
	n => (x : \Type) -> (x -> x) -> (x -> x) n n : Church) => m Church inc n	
Здесь ожидае	PM, To inc : Church -> Church	
Примечание.	Как это фиксить: \Туре : \Туре невозможно (парадокс Жирара)	
1.1 Пред	икативность	
Определени	e.	
• \Type n		
• \Type 0	— базовые типы	
*-	— все, включая \Туре 0	
*-	k + 1) — все, включая \Туре k	
Пример. Чер		
\func inc (n \func add (m (n	<pre>1 => \Pi (x : \Type) -> (x -> x) -> (x -> x) 1 : Church) => \lam t f x => n t f (f x) 1 : Church \levels (\suc\lp)\lh) 1 : Church \levels \lp \lh) : Church \levels \lp \lh 2 m Church inc m</pre>	

Примечание. \Ргор — вселенная пропозиций "чистых утверждений"

Определение. X : \Туре — \Ргор, если все элементы x равны

```
\Piример. Доказательство Nat — prop \Piример. a : \Prop, b : \Prop, то (a, b) : \Prop \Piример. Either a b — не prop, inLeft a \neq inRight b \Piример. \exists x. \varphi(x) — не prop
```

Определение. $\$ Тип, в котором равентсво — $\$ Ргор

Примечание. Гомотопический уровень типа — +1 от уровня равенств на нем

Определение. Импредикативность — нет различий по пропозициональным уровням

Примечание. Все \Ргор импредикативны

Определение. Пропозициональное обрезание ||x||: \Prop

```
\bullet \parallel Either a b \parallel => a || b
```

```
• \| \Sigma(x : N) (T(x)) \| - \exists x^N T(x) \|
```

B аренде это TruncP : \Type -> \Prop, inP

Можем объявлять равенство между некоторыми вещами

```
\data Int'
pos' Nat
neg' Nat
```

Проблема: есть два 0. Можно сделать так

Примечание. Можем писать, говоря что все элементы дататайпа равны между собой

Положили А в коробочку и рядом положили равенство

Примечание.

- Set деклалирует единственность равенства
- Ргор деклалирует единственность элементов