Лекция 12

Ilya Yaroshevskiy

13 мая 2023 г.

Содержание

Теорема 0.1. Пусть $z \in \mathbb{R}$, $D_z = \{(x,y) | g(x,y) < z\}$

Тогда случайная величина $\eta = g(x,y)$ имеет функцию распределения:

$$F_{\eta}(z) = \iint_{D_z} f(x, y) \, dx \, dy$$

1 Формула свертки

Теорема 1.1. Пусть ξ_1, ξ_2 — независимые, абсолютно непрерывные случайные величины с плотностями $f_{\xi_1}(x)$ и $f_{\xi_2}(x)$

Тогда $\xi_1 + \xi_2$ имеет абсолютно непрерывное распределение с плотностью

$$f_{\xi_1 + \xi_2}(t) = \int_{-\infty}^{\infty} f_{\xi_1}(t) \cdot f_{\xi_2}(t - x) dx$$

Доказательство. Т.к. случайные величины ξ_1 и ξ_2 независимы, то плотность совместного распределения равна произведению плотностей: $f_{\xi_1\xi_2}(x,y)=f_{\xi_1}(x)f_{\xi_2}(y)$. Применим предыдущую теорему для $\eta=g(\xi_1,\xi_2)=\xi_1+\xi_2$. Тогда $D_z=\{(x,y)\in\mathbb{R}^2\big|x+y< z\}$

$$F_{\xi_{1}+\xi_{2}}(z) = \iint_{D_{z}} f_{\xi_{1}\xi_{2}}(x,y) \, dx \, dy = \int_{-\infty}^{\infty} dx \int_{-\infty}^{t-x} f_{\xi_{1}}(x) f_{\xi_{2}}(y) \, dy =$$

$$\begin{bmatrix} y = t - x & t = y + x & dy = dy \\ y(-\infty) = -\infty & t(z - x) = z \end{bmatrix} = \int_{\infty}^{\infty} dx \int_{-\infty}^{z} f_{\xi_{1}}(x) f_{\xi_{2}}(t - x) \, dt =$$

$$= \int_{-\infty}^{z} \underbrace{\int_{-\infty}^{\infty} f_{\xi_{1}}(x) f_{\xi_{2}}(t - x) \, dx}_{f_{\xi_{1}+\xi_{2}}(t)} \, dt \implies f_{\xi_{1}+\xi_{2}}(t) = \int_{-\infty}^{\infty} f_{\xi_{1}}(x) f_{\xi_{2}}(t - x) \, dx$$

2 Сумма стандартных распределений

Определение. Если сумма двух независимых случайных величин одного типа распределений также будет этого типа, то говорят что это распределение **устойчиво** относительно суммирования

Пример. Независимые случайные величины:

- $\xi_1 \in B_{n,p}$
- $\xi_2 \in B_{m,p}$

Тогда $\xi_1 + \xi_2 \in B_{n+m,p}$

Доказательство. $\xi_1 + \xi_2$ — число успехов в серии из m+n испытаний, где p — вероятность успеха при одном испытании. $\xi_1 + \xi_2 \in B_{n+m,p}$

Пример. Независимые случайные величины:

- $\xi_1 \in \Pi_{\lambda}$
- $\xi_2 \in \Pi_\mu$

Тогда $\xi_1 + \xi_2 \in \Pi_{\lambda + \mu}$

Доказательство.

$$P(\xi_1+\xi_2=k)=\sum_{i=0}^k P(\xi_1=i,\xi_2=k-i)=\sum_{i=0}^k p(\xi_1=i)\cdot p(\xi_2=k-i)=$$
 $=\sum_{i=0}^k$ Доделать

 Π ример. $\xi_1, \xi_2 \in N(0,1)$ — независимые случайные величины Тогда $\xi_1 + \xi_2 \in N(0,2)$

Доказательство. Доделать

 Π ример.

- $\xi_1 \in N(a_1, \sigma_1^2)$
- $\xi_2 \in N(a_2, \sigma_2^2)$

Тогда $\xi_1 + \xi_2 \in N(a_1 + a_2, \sigma_1^2 + \sigma_2^2)$

 Π ример. $\xi_1,\dots,\xi_n\in E_{\alpha}$ — независимые случайные величины Тогда $\xi_1+\dots+\xi_n\in\Gamma_{\alpha,n}$

Доказательство. По индукции

База $E_{\alpha} = \Gamma_{\alpha,1}$

 ${\bf \underline{\Pi}epexo\underline{\jmath}}\ \Pi$ усть $\xi_1+\cdots+\xi_{k-1}=\Gamma_{\alpha,k-1},$ тогда:

$$f_{\xi_{k-1}}(x) = \begin{cases} 0 & x \le 0\\ \frac{\alpha^{k-1}}{(x-2)!} x^{k-1} e^{-\alpha x} & x \ge 0 \end{cases}$$

По формуле свертки

Доделать

Пример.

- $\xi_1 \in \Gamma_{\alpha,\lambda_1}$
- $\xi_2 \in \Gamma_{\alpha,\lambda_2}$

Тогда $\xi_1+\xi_2\in\Gamma_{lpha,\lambda_1+\lambda_2}$

Доказательство. Доделать

Пример. $\xi_1, \xi_2 \in U(0,1)$

3 Условное распределение

Определение. Условным распределением случайной величины из системы случайных величин (ξ,η) называется ее распределение найденное при условии, что другая случайная величина приняла определенное значение

Обозначение. $\xi | \eta = y - \xi$ при условии что η приняла значение y

Определение. A: Условным математическим ожиданием $E(\xi|\eta=y)$ называется математическое ожидание случайной величины ξ при соответствующем условном распределении

- 1. Условное распределение в дискретной системе двух случайных величин Доделать
- 2. Условное распределение в непрерывной системе двух случайных величин Пусть двумерная абсолютно непрерывная случайная величина (ξ, η) задана плотностью $f_{\xi,\eta}(x,y)$. Тогда плотность условного распределения $\xi|\eta=y$ будет равна:

$$f(x|y) = \frac{f_{\xi,\eta}(x,y)}{f_{\eta}(y)}$$

Определение. Функция f(x|y) называется условной плотностью Аналогично $f(y|x)=\frac{f_{\xi,\eta}(x,y)}{f_{\varepsilon}(x)}$

Лемма 1. Условное математическое ожидание вычисляется по формуле:

$$E(\xi|\eta = y) = \int_{-\infty}^{\infty} x \cdot f(x|y) \, dx$$

Аналогично

$$E(\eta|\xi=x) = \int_{-\infty}^{\infty} y \cdot f(y|x) \, dy$$

Примечание. При фиксированном значении переменной x f(y|x) будет функцией зависящей только от y, а условное математическое ожидание будет числом. Если считать x переменной, то условное математическое ожидание является функцией зависящей от x и называется функцией регрессией eta на ξ . Т.к. eta — случайная величина, то $E(\xi|\eta)$ можно рассматривать как случайную величину.