Лекции по Математической логике 4 семестр

Ilya Yaroshevskiy

13 мая 2023 г.

Оглавление

Лекци	я 1		3				
1.1	Исчесление высказываний						
	1.1.1	Язык	3				
	1.1.2	Мета и предметные	3				
	1.1.3	Сокращение записи	3				
	1.1.4	Теория моделей	4				
	1.1.5	Теория доказательств	4				
	1.1.6	Правило Modus Ponens и доказательство	5				
Лекци	я 2		6				
2.1	Интуг	иционистская логика	8				
Лекци	я 3		9				
3.1	Праві	ила вывода	9				
Лекци	я 4		13				
4.1	Упоря	доченность	13				
4.2	Табли	чные модели	13				
4.3	Модел	пи Крипке	14				
4.4	Доказ	ательство нетабличности	15				
Лекци	я 5		17				
5.1	Прогр	оммы	17				
5.2	Исчис	сление предикатов	18				
	5.2.1	Сокращение записи	19				
	5.2.2	Теория моделей	19				
	5.2.3	Теория доказательств	20				
Лекци	я 6		22				
6.1	Исчис	ление предикатов	22				
	6.1.1	Расставление скобок	22				
	6.1.2	Вхождение	23				
	6.1.3	Свободные подстановки	23				
	6.1.4	Пример доказательства	24				
	615		24				

Лекци	ия 7	25					
7.1	7.1 Полнота исчесления предикатов						
Лекци	я 8	28					
8.1	Исчисление предиктов	28					
Лекци	ия 9	31					
9.1	Теория первого порядка	31					
	9.1.1 Формальная арифметика	33					
	9.1.2 Выразимость отношений и представимость функций в формально	й ариф-					
	метике	34					
Лекци	าя 10	35					
	Рекурсивные функции	35					
	10.1.1 Функция Аккермана	37					
10.2	2 Связь с формальной арифметикой						
Лекци	าร 11	39					
	Геделева нумерация	39					
Лекци	ия 12	42					
	Теория множеств	42					
Лекци	ия 13	46					
13.1	l Аксиома выбора	46					
	2 Аксиома фундирования						
	В Схема аксиом подстановки						
	4 Мощность множества						
Лекци	เม 14	48					
	Теорема Левенгейма-Сголема	48					
1/1.9) Hpc (d	40					

1.1 Исчесление высказываний

1.1.1 Язык

- 1. Пропозициональные переменные A'_i большая буква начала латинского алфавита
- Связки

$$\frac{\alpha}{\alpha}, \beta-\text{высказывания}$$
 Тогда $(\alpha\to\beta), (\alpha\&\beta), (\alpha\vee\beta), (\neg\alpha)-$ высказывания

1.1.2 Мета и предметные

- $\alpha, \beta, \gamma, \ldots, \varphi, \psi, \ldots$ метапеременные для выражений
- \bullet X,Y,Z метапеременные для предметных переменные

Метавыражение: $\alpha \to \beta$

Предметное выражение: $A \to (A \to A)$ (заменили α на A, β на $(A \to A)$) Пример. Черным — предметные выражения, Синим — метавыражения

$$(X \to Y)[X \coloneqq A, Y \coloneqq B] \equiv A \to B$$

$$(\alpha \to (A \to X))[\alpha \coloneqq A, X \coloneqq B] \equiv A \to (A \to B)$$

$$(\alpha \to (A \to X))[\alpha \coloneqq (A \to P), X \coloneqq B] \equiv (A \to P) \to (A \to B)$$

1.1.3 Сокращение записи

- ∨, &, ¬ скобки слева направо(лево-ассоциативная)
- ullet ightarrow правоассоциативная
- Приоритет по возрастанию: \rightarrow , \lor , &, \neg

Пример. Расставление скобок

$$(A \to ((B \& C) \to D))$$
$$(A \to (B \to C))$$

1.1.4 Теория моделей

- ullet \mathcal{P} множество предметных переменных
- $\llbracket \cdot \rrbracket : \mathcal{T} \to V$, где \mathcal{T} множество высказываний, $V = \{ \Pi, \Pi \}$ множество истиностных значений
- 1. $[\![x]\!]: \mathcal{P} \to V$ задается при оценке $[\![\!]]^{A:=v_1,B:=v_2}$:
 - $\mathcal{P} = v_1$
 - $\bullet \mathcal{P} = v_2$

2.
$$\llbracket \alpha \star \beta \rrbracket = \llbracket \alpha \rrbracket$$
 \star $\llbracket \beta \rrbracket$, где $\star \in [\&, \lor, \neg, \to]$

Пример.

$$\llbracket A \to A \rrbracket^{A:=\mathsf{M},B:=\mathsf{J} \mathsf{I}} = \llbracket A \rrbracket^{A:=\mathsf{M},B:=\mathsf{J} \mathsf{I}} \to \llbracket A \rrbracket^{A:=\mathsf{M},B:=\mathsf{J} \mathsf{I}} = \mathsf{M} \to \mathsf{M} = \mathsf{M}$$

Также можно записать так:

$$[\![A \to A]\!]^{A:=\mathrm{II},B:=\mathrm{JI}} = f_\to([\![A]\!]^{A:=\mathrm{II},B:=\mathrm{JI}},[\![A]\!]^{A:=\mathrm{II},B:=\mathrm{JI}}) = f_\to(\mathrm{I\hspace{-.1em}I},\mathrm{I\hspace{-.1em}I\hspace{-.1em}I}) = I$$

, где f_{\rightarrow} определена так:

1.1.5 Теория доказательств

Определение. Схема высказывания — строка соответсвующая определению высказывания, с:

• метапеременными α, β, \dots

Определение. Аксиома — высказывания:

- 1. $\alpha \to (\beta \to \alpha)$
- 2. $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$
- 3. $\alpha \to \beta \to \alpha \& \beta$
- 4. $\alpha \& \beta \rightarrow \alpha$
- 5. $\alpha \& \beta \to \beta$
- 6. $\alpha \to \alpha \vee \beta$
- 7. $\beta \to \alpha \vee \beta$
- 8. $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$
- 9. $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$
- 10. $\neg \neg \alpha \rightarrow \alpha$

1.1.6 Правило Modus Ponens и доказательство

Определение. Доказательство (вывод) — последовательность высказываний $\alpha_1, \dots, \alpha_n$, где α_i :

- аксиома
- существует k,l < i, что $\alpha_k = \alpha_l \to \alpha$

$$\frac{A,\ A\to B}{B}$$

 Π ример. $\vdash A \to A$

Определение. Доказательством высказывания β — список высказываний α_1,\dots,α_n

- $\alpha_1, \ldots, \alpha_n$ доказательство
- $\alpha_n \equiv \beta$

Обозначение. Γ, Δ, Σ — списки высказываний

Определение. Следование: $\Gamma \vDash \alpha$, если

- $\Gamma = \gamma_1, \ldots, \gamma_n$
- Всегда когда все $\llbracket \gamma_i \rrbracket = \mathsf{И}$, то $\llbracket \alpha \rrbracket = \mathsf{И}$

 $\Pi puмер. \models \alpha - \alpha$ общезначимо

Определение. Теория Исчисление высказываний корректна, если при любом α из $\vdash \alpha$ следует $\models \alpha$

Определение. Исчисление полно, если при любом α из $\models \alpha$ следует $\vdash \alpha$

Теорема 2.0.1 (о дедукции). $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \beta$

Доказательство.

- (\Leftarrow) Пусть $\Gamma \vdash \alpha \to \beta$. Т.е. существует доказательство $\delta_1, \dots, \delta_n$, где $\delta_n = \alpha \to \beta$ Построим новое доказательство: $\delta_1, \dots, \delta_n, \alpha$ (гипотеза), β (М.Р.) Эта новая последовательность — доказательство $\Gamma, \alpha \vdash \beta$
- (⇒) Рассмотрим $\delta_1, \ldots, \delta_n$ доказательство $\Gamma, \alpha \vdash \beta$

$$\begin{array}{ccc}
\sigma_1 & \alpha \to \delta_1 \\
\vdots & \vdots \\
\sigma_n & \alpha \to \delta_n
\end{array}$$

Утвреждение: последовательность σ_1,\dots,σ_n можно дополнить до доказательства, т.е. каждый σ_i — аксиома, гипотеза или получается по М.Р. Докажем по индукции:

База: n=0

Переход: пусть $\sigma_0, \dots, \sigma_n$ — доказательсво. тогда $\sigma_{n+1} = \alpha \to \delta_{n+1}$ по трем вариантам:

- 1. δ_{n+1} аксиома или гипотеза $\not\equiv \alpha$
- 2. $\delta_{n+1} \equiv \alpha$
- 3. $\delta_k \equiv \delta_l \to \delta_{n+1}, \ k, l \le n$

Докажем каждый из трех вариантов

$$\begin{array}{c|cccc} (n+0.2) & \delta_{n+1} & \text{ (аксиома или гипотеза)} \\ (n+0.4) & & \\ (n+1) & \alpha \to \delta_{n+1} & \text{ (сх. акс. 1)} \\ (n+1) & \alpha \to \delta_{n+1} & \text{ (M.P. } n+0.2, n+0.4) \end{array}$$

2.
$$(n+0.2, n+0.4, n+0.6, n+0.8, n+1)$$
 — доказательтво $\alpha \to \alpha$

3

$$\begin{array}{lll} (k) & \alpha \rightarrow (\sigma_l \rightarrow \sigma_{n+1}) \\ (l) & \alpha \rightarrow \sigma_l \\ (n+0.2) & (\alpha \rightarrow \delta_l) \rightarrow (\alpha \rightarrow (\delta_l \rightarrow \delta_{n+1})) \rightarrow (\alpha \rightarrow \delta_{n+1}) & (\text{cx. 2}) \\ (n+0.4) & (\alpha \rightarrow \delta_l \rightarrow \delta_{n+1}) \rightarrow (\alpha \rightarrow \delta_{n+1}) & (\text{M.P. } n+0.2, l) \\ (n+1) & \alpha \rightarrow \delta_{n+1} & (\text{M.P. } n+0.4, k) \end{array}$$

Теорема 2.0.2 (о корректности). Пусть $\vdash \alpha$

Tогда $\models \alpha$

Доказательство. Индукция по длине доказательства: каждая $[\![\delta_i]\!]=\mathrm{II},$ если δ_1,\ldots,δ_k — доказательство α

Пусть $[\![\delta_1]\!] = \mathrm{И}, \ldots, [\![\delta_n]\!] = \mathrm{И}$. Тогда осн. δ_{n+1} :

1. δ_{n+1} — аксиома

(а)
$$\delta_{n+1} \equiv \alpha \to \beta \to \alpha$$
 (Сущесвуют α, β , что) Пусть $\delta_{n+1} = A \to B \to A$. Тогда $\alpha \equiv A, \beta \equiv B$ $[\![\alpha] \to \beta \to \alpha]\!]$ $[\![\alpha]\!] \coloneqq a, [\![\beta]\!] \coloneqq b = M$

			$\alpha \to \beta \to \alpha$
Л	Л	И	И И И
Л	И	Л	И
И	Л	И	И
И	Л И Л И	И	И

2. δ_{n+1} — М.Р. $\delta_k = \delta_l \to \delta_{n+1}$ Фиксируем оценку $[\![\delta_k]\!] = [\![\delta_l]\!] = \mathrm{И}$, тогда $[\![\delta_l \to \delta_{n+1}]\!] = \mathrm{И}$

Т.е.
$$[\![\delta_{n+1}]\!] = \mathcal{U}$$

Теорема 2.0.3 (о полноте). Пусть $\vDash \alpha$, тогда $\vdash \alpha$

Обозначение.

$$[\beta]^{\alpha} \equiv \begin{cases} \alpha & [\![\beta]\!] = \mathbf{M} \\ \neg \alpha & [\![\beta]\!] = \mathbf{M} \end{cases}$$

ITMO y2019

Page 7 of 49

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

Индукция по длине формулы (по структуре) База: $\alpha \equiv P_i \ [P_i]^{P_i} \vdash [P_i]^{P_i}$

Переход: пусть η, ζ : $\Delta \vdash [\eta]^{\eta}, \Delta \vdash [\zeta]^{\zeta}$. Покажем, что $\Delta \vdash [\eta \star \zeta]^{\eta \star \zeta}$, где \star — все свзяки Используя лемму: $\vdash \alpha$, т.е. $[x_1]^{P_1}, \ldots, [x_n]^{P_n} \vdash [\alpha]^{\alpha}$. Но $[\![\alpha]\!] = \mathsf{И}$ при любой оценке, т.е. $[x_1]^{P_1}, \ldots, [x_n]^{P_n} \vdash \alpha$ при всех x_i

$$\begin{array}{c} [x_1]^{P_1}, \dots, [x_{n-1}]^{P_{n-1}}, P_n \vdash \alpha \\ [x_1]^{P_1}, \dots, [x_{n-1}]^{P_{n-1}}, \neg P_n \vdash \alpha \end{array} | \xrightarrow{\text{\tiny \mathtt{JEMMA}}} [x_1]^{P_1}, \dots, [x_{n-1}]^{P_{n-1}} \vdash \alpha$$

Лемма 1.

- $\Gamma, \eta \vdash \zeta$
- $\Gamma, \neg \eta \vdash \zeta$

Tог ∂a $\Gamma \vdash \zeta$

Лемма 2. $[x_1]^{P_1}, \ldots, [x_n]^{P_n} \vdash \alpha, \ mo \ [x_1]^{P_1}, \ldots, [x_{n-1}]^{P_{n-1}} \vdash \alpha$

2.1Интуиционистская логика

 $A \vee B$ — плохо

 Π ример. Докажем: существует a,b, что $a,b\in\mathbb{R}\setminus\mathbb{Q},$ но $a^b\in\mathbb{Q}$ Пусть $a=b=\sqrt{2}$. Рассмотрим $\sqrt{2}^{\sqrt{2}}\in\mathbb{R}\setminus\mathbb{Q}$

- Если нет, то ОК
- ullet Если да, то возьмем $a=\sqrt{2}^{\sqrt{2}}, b=\sqrt{2}, \, a^b=(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}=\sqrt{2}^2=2$

ВНК-интерпретация. α, β

- $\alpha \& \beta$ есть α, β
- $\alpha \lor \beta$ есть α либо β и мы знаем какое
- $\alpha \to \beta$ есть способ перестроить α в β
- \bot конструкция без построения $\neg \alpha \equiv \alpha \rightarrow \bot$

ITMO y2019

3.1 Правила вывода

Сверху посылки, снизу заключения

• Аксиома

$$\overline{\Gamma,\varphi \vdash \varphi}$$

 \bullet Введение \rightarrow

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

 \bullet Удаление \to

$$\frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

• Введение &

$$\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \& \psi}$$

• Удаление &

$$\frac{\Gamma \vdash \varphi \& \psi}{\Gamma \vdash \varphi}$$

$$\frac{\Gamma \vdash \varphi \& \psi}{\Gamma \vdash \psi}$$

• Введение ∨

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi}$$
$$\frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi}$$

• Удалние ∨

$$\frac{\Gamma, \varphi \vdash \rho \quad \Gamma, \psi \vdash \rho \quad \Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \rho}$$

• Удаление 丄

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \wp}$$

Пример.

$$\frac{\overline{A \vdash A}(akc.)}{\vdash A \to A}(bb. \to)$$

 $\Pi puмep$. Докажем $_{\vdash A\&B \to B\&A}$

$$\frac{\frac{\overline{A\&B \vdash A\&B}^{\,\,\text{(акс.)}}}{A\&B \vdash B} \text{(уд. \&)} \quad \frac{\overline{A\&B \vdash A\&B}^{\,\,\text{(акс.)}}}{A\&B \vdash A} \text{(уд. \&)}}{\frac{A\&B \vdash B\&A}{\vdash A\&B \to BA}} \text{(вв. &)}$$

Определение. Фиксируем A

Частичный порядок — антисимметричное, транзитивное, рефлексивное отношение Линейный — сравнимы любые 2 элемента

- $a \le b \lor b \le a$
- Наименьший элемент S такой $k \in S$, что если $x \in S$, то $k \le x$
- Минимальный элемент S такой $k \in S$, что нет $x \in S$, что $x \le k$

Пример.

Нет наименьшего, но есть 3 минимальных. Стрелка из a в b обозначает $b \le a$

Определение.

- Множество верхних граней a и b: $\{x | a \le x \& b \le x\}$
- Множество нижних граней a и b: $\{x | x \le a \& x \le b\}$

Определение.

- a+b нименьший элемент множества верхних граней
- $a \cdot b$ наибольший элемент множества нижних граней

Определение. Решетка = $\langle A, \leq \rangle$ — структура, где для каждых a,b есть как a+b, так и $a\cdot b$, т.е. $a\in A,b\in B\implies a+b\in A$ и $a\cdot b\in A$

Определение. Дистрибутивная решетка если всегда $a\cdot (b+c)=a\cdot b+a\cdot c$

Пемма 3. В дистрибутивной решетке $a+b\cdot c=(a+b)\cdot (a+c)$

Определение. Псевдодополнение $a \to b = \text{наиб.}\{c | a \cdot c \le b\}$

Определение. Импликативная решетка — решетка, где для любых a,b есть $a \to b$

Определение. 0 — наименьший элемент решетки, 1 — наибольший элемент решетки

Определение. Псевдобулева алгебра (алгебра Гейтинга) — импликативная решетка с 0

Определение. Булева алгебра — псевдобулева алгебра, такая что $a+(a \to 0)=1$ *Пример.*

- $a \cdot 0 = 0$
- $1 \cdot b = b$
- $a \cdot b = 0$
- a + b = 1
- $a \to b =$ наиб. $\{x \big| a \cdot x \le b\} = b$ $\{x \big| a \cdot x \le b\} = \{0, b\}$
- $a \rightarrow 1 = 1$
- $a \rightarrow 0 = 0$

Можем представить в виде пары $\langle x, y \rangle$

- $a = \langle 1, 0 \rangle$
- $b = \langle 0, 1 \rangle$
- $1 = \langle 1, 1 \rangle$
- $0 = \langle 0, 0 \rangle$

Лемма 4. B импликативной решетке всегда есть 1.

Теорема 3.1.1. Любая алгебра Гейтинга — модель ИИВ

Теорема 3.1.2. Любая булева алгебра — модель КИВ

Определение. Рассмотрим множество X — **носитель**. Рассмотрим $\Omega \subseteq 2^X$ — подмножество подмножеств X — **топология**.

- 1. $\bigcup X_i \in \Omega$, где $X_i \in \Omega$
- 2. $X_1 \cap \cdots \cap X_n \in \Omega$, если $X_i \in \Omega$
- 3. $\emptyset, X \in \Omega$

Определение.

$$(X)^{\circ} = \text{наиб.}\{w|w \subseteq X, w - \text{откр.}\}$$

 $\mathit{Пример}.$ Дискретная топология: $\Omega=2^X$ — любое множество открыто. Тогда $\langle \Omega, \leq \rangle$ — булева алгебра

Теорема 3.1.3.

- $a + b = a \cup b$
- $a \cdot b = a \cap b$
- $a \to b = ((X \setminus a) \cup b)^{\circ}$
- $a \leq b$ тогда и только тогда, когда $a \subseteq b$

 $\underline{\text{Тогда}} \; \langle \Omega, \leq \rangle -$ алгебра Гейтинга

Определение. X — все формулы логики

- $\alpha \leq \beta$ это $\alpha \vdash \beta$
- $\alpha \approx \beta$, если $\alpha \vdash \beta$ и $\beta \vdash \alpha$
- $[\alpha]_{\approx} = \{\gamma | \gamma \approx \alpha\}$ класс эквивалентности
- $X/_{\approx} = \{ [\alpha]_{\approx} | \alpha \in X \}$

 $\langle X/_{\approx}, \leq \rangle$ — алгебра Гейтинга

Свойство 1. $\langle X/_{\approx}, \leq \rangle$ — алгебра Линденбаума, где X, \approx — из интуиционистской логики

Теорема 3.1.4. Алгебра Гейтинга — полная модель ИИВ

4.1 Упорядоченность

Определение. Предпорядок — транзитивное, рефлексивнре

Определение. Отношение порядка (частичный) — антисимметричное, транзитивное, рефлексивное

Определение. Линейный порядок — порядок в котором $a \leq b$ или $b \leq a$

Определение. Полный порядок — линейный, каждое подмножество имеет наименьший элемент.

 $\Pi puмер. \ \mathbb{N}$ — вполне упорядоченное множество

 $\Pi pumep. \mathbb{R}$ — не вполне упорядоченной множество

- \bullet (0, 1) не имееи наименьышего
- \bullet $\mathbb R$ не имеет наименьшего

4.2 Табличные модели

Определение. Назовем модель табличной для ИИВ:

- V множество истинностных значений $f_{\to}, f_{\&}, f_{V}: V^{2} \to V, \, f_{\neg}: V \to V$ Выделенные значения $T \in V$ $[\![p_{i}]\!] \in V \, f_{\mathcal{P}}: p_{i} \to V$
- $$\begin{split} \bullet & \; [\![p_i]\!] = f_{\mathcal{P}}(p_i) \\ & \; [\![\alpha \star \beta]\!] = f_{\star}([\![\alpha]\!], [\![\beta]\!]) \\ & \; [\![\neg \alpha]\!] = f_{\neg}([\![\alpha]\!]) \end{split}$$

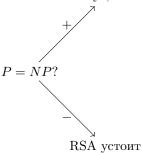
Если $\vdash \alpha$, то $\models \alpha$ означает, что $\llbracket \alpha \rrbracket = T$, при любой $f_{\mathcal{P}}$

Определение. Конечная модель: модель где V — конечно

Теорема 4.2.1. У ИИВ не существует полной конечной табличной модели

4.3 Модели Крипке

все банки лопнут, RSA сломают!!!



- 1. $W = \{W_i\}$ множество миров
- 2. частичный порядок(≿)
- 3. отношение вынужденности: $W_j \Vdash p_i$ (\Vdash) $\subseteq W \times \mathcal{P}$ При этом, если $W_j \Vdash p_i$ и $W_j \preceq W_k$, то $W_k \Vdash p$

Определение.

- 1. $W_i \Vdash \alpha$ и $W_i \Vdash \beta$, тогда (и только тогда) $W_i \Vdash \alpha \& \beta$
- 2. $W_i \Vdash \alpha$ или $W_i \Vdash \beta$, то $W_i \Vdash \alpha \lor \beta$
- 3. Пусть во всех $W_i \preceq W_j$ всегда когда $W_j \Vdash \alpha$ имеет место $W_j \Vdash \beta$ Тогда $W_i \Vdash \alpha \to \beta$
- 4. $W_i \Vdash \neg \alpha \alpha$ не вынуждено нигде, начиная с W_i : $W_i \preceq W_j$, то $W_j \not \Vdash \alpha$

Теорема 4.3.1. Если $W_i \Vdash \alpha$ и $W_i \preceq W_j$, то $W_j \Vdash \alpha$

Определение. Если $W_i \Vdash \alpha$ при всех $W_i \in W$, то $\models \alpha$

Теорема 4.3.2. ИИВ корректна в модели Крипке

Доказательство. 1. $\langle W,\Omega\rangle$ — топология, где $\Omega=\{w\subseteq W|\text{если }W_i\in w,\ W_i\preceq W_j,\ \text{то }W_j\in w\}$

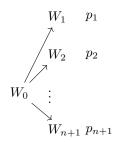
2. $\{W_k|W_k\Vdash p_j\}$ — открытое множество Примем $[\![p_j]\!]=\{W_k|W_k\Vdash p_j\}$ Аналогично $[\![\alpha]\!]=\{W_k|W_k\Vdash \alpha\}$

4.4 Доказательство нетабличности

Пусть существует конечная табличная модель |V|=n

$$\varphi_n = \bigvee_{\substack{1 \le i, j \le n+1 \\ i \ne j}} (p_i \to p_j \& p_j \to p_i)$$

1. $\not\vdash \varphi$



$$W_1 \not\Vdash (p_i \to p_k) \& (p_k \to p_1), \ k \neq 1$$

Значит

$$\forall (p_i \to p_j) \& (p_j \to p_i)
\forall \bigvee (p_i \to p_j) \& (p_j \to p_i)
\forall \varphi_n$$

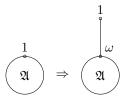
2. $\models_V \varphi_n$: по признаку Дирихле найдутся $i \neq j$: $\llbracket p_i \rrbracket = \llbracket p_j \rrbracket$ $\llbracket p_i \to p_j \rrbracket = \mathrm{H}$ и $\llbracket \varphi_n \rrbracket = \mathrm{H}$ Значит $\vdash \varphi_n$ — противоречие

Определение. Дизъюнктивность ИИВ: $\vdash \alpha \lor \beta$ влечет $\vdash \alpha$ или $\vdash \beta$

Определение. Гёделева алгебра — алгебра Гейтинга, такая что из $\alpha+\beta=1$ следует что $\alpha=1$ или $\beta=1$

Определение. Пусть \mathfrak{A} — алгебра Гейтинга, тогда:

1. $\Gamma(\mathfrak{A})$



Добавим новый элемент $1_{\Gamma(\mathfrak{A})}$ переименуем $1_{\mathfrak{A}}$ в ω

Теорема 4.4.1.

- \bullet $\Gamma(\mathfrak{A})$ алгебра Гейтинга
- Г(21) Геделева

Определение. Гомоморфизм алгебр Гейтинга

- $\varphi:\mathfrak{A}\to\mathfrak{B}$
- $\varphi(a \star b) = \varphi(a) \star \varphi(b)$
- $\varphi(1_{\mathfrak{A}}) = 1_{\mathfrak{B}}$
- $\varphi(0_{\mathfrak{A}}) = 0_{\mathfrak{B}}$

Теорема 4.4.2. $a \le b$, то $\varphi(a) \le \varphi(b)$

Определение.

- α формула ИИВ
- f, g: оценки ИИВ
- $f: \text{ИИВ} \to \mathfrak{A}$
- q: ИИВ $\rightarrow \mathfrak{B}$

 φ согласована с f,g, если $\varphi(f(\alpha))=g(\alpha)$

Теорема 4.4.3. если $\varphi:\mathfrak{A}\to\mathfrak{B}$ согласована с f,g и оценка $[\![\alpha]\!]_g\neq 1_{\mathfrak{B}}$, то $[\![\alpha]\!]_f\neq 1_{\mathfrak{A}}$

Теорема 4.4.4. ИИВ дизъюнктивно

Доказательство. Рассмторим алгебру Линденбаума: \mathcal{L} Рассмотрим $\Gamma(\mathcal{L})$

• $\varphi: \Gamma(\mathcal{L}) \to \mathcal{L}$

$$\varphi(x) = \begin{cases} 1_{\mathcal{L}} &, x = \omega \\ x &, \text{иначе} \end{cases}$$

 φ — гомоморфизм

Пусть $\vdash \alpha \lor \beta$, тогда $\llbracket \alpha \lor \beta \rrbracket_{\Gamma(\mathcal{L})} = 1_{\Gamma(\mathcal{L})}$ $\llbracket \alpha + \beta \rrbracket = 1$, и т.к. $\Gamma(\mathcal{L})$ — Геделева то $\llbracket \alpha \rrbracket = 1$ или $\llbracket \beta \rrbracket = 1$

Пусть $\not\vdash \alpha$ и $\not\vdash \beta$, тогда $\varphi(\llbracket \alpha \rrbracket) \neq 1_{\mathcal{L}}$ и $\varphi(\llbracket \beta \rrbracket) \neq 1_{\mathcal{L}}$, т.е. $\llbracket \alpha \rrbracket_{\mathcal{L}} \neq 1_{\mathcal{L}}$ и $\llbracket \beta \rrbracket_{\mathcal{L}} \neq 1_{\mathcal{L}}$, тогда $\llbracket \alpha \rrbracket_{\Gamma(\mathcal{L})} \neq 1_{\mathcal{L}}$ $1_{\Gamma(\mathcal{L})}$ и $[\![\beta]\!]_{\Gamma(\mathcal{L})}
eq 1_{\Gamma(\mathcal{L})} \Rightarrow$ Противоречие

5.1 Программы

программа(функция)

- $P: \alpha \to \beta$ берет α , возвращает β
- P доказательство, что из α следует β Π ример.

```
f a = a
```

 $f:A \to A-f$ доказывает что, из A следует A

```
        логическок исчесления
        Типизированное λ-исчесление

        логическая формула доказательство
        значение значение обитаемый тип(имеет хотя бы один экземпляр)

        →
        функция упорядоченная пара алг. тип(тип-сумма)
```

Пример. 5 доказывает Int

Пример. Список:

```
Type list = Record
Nul: boolean;
case Nul of
True :;
False : Next: ^list;
end;

struct list {
    *list next;
};
```

Eсли next == NULL — то конец

Пример. Дерево:

```
struct tree {
    tree* left;
    tree* right;
    int value;
};
```

Определение. Отмеченное (дизъюнктное) объединение множеств:

- A, B множества
- $A \sqcup B = \{\langle ``A``, a \rangle | a \in A \} \cup \{\langle ``B``, a \rangle | b \in B \}$

Пусть $S \in A \sqcup B$. Мы знаем откуда S

```
data List a = Nil | Cons a (List a)
    example = Cons 1 (Cons 2 (Cons 3 Nil)) -- [1; 2; 3]

union {
    int a;
    char b;
};
```

Пример.

$$\frac{\Gamma \vdash \overset{\text{Nil}}{\alpha} \to \gamma \quad \Gamma \vdash \overset{\text{Cons}}{\beta} \to \gamma \quad \vdash \alpha \vee \beta}{\Gamma \vdash \gamma}$$

```
let rec count 1 (*\alpha + \beta *) =
match 1 with

Nil (*\alpha *) \rightarrow 0 (*\alpha \rightarrow int *)
Cons(hd, tl) (*\beta *) \rightarrow 1 + \text{count tl} (*\beta \rightarrow int *)
```

5.2 Исчисление предикатов

Определение. Язык исчисления предикатов

- логические выражения "предикаты"/"формулы"
- предметные выражния "термы"

 Θ — метаперменные для термов

Термы:

• Атомы:

- $-a,b,c,d,\ldots$ предметные переменные
- -x, y, z метапеременные для предметных перменных
- Функциональные Символы
 - -f,g,h Функциональные символы (метапереминые)
 - $-f(\Theta_1,\ldots\Theta_n)$ применение функциональных символов
- Логические выражения:

Если n=0, будем писать f,g — без скобок

- Р метаперменные для предикатных символов
- -A, B, C предикатный символ
- $-P(\Theta_1,\ldots,\Theta_n)$ применение предикатных символов
- $-\ \&, \lor, \lnot, \rightarrow -$ Связки
- $\forall x. \varphi$ и $\exists x. \varphi$ кванторы "<квантор> <переменная>.<выражение>"

5.2.1 Сокращение записи

 $\text{И.B} + \text{жадность} \ \forall, \exists$

Метавыражение:

$$\forall x. (P(x)\&(\forall y.P(y)))$$

Квантор съедает все что дают, т.е. имеет минимальный приоритет. Правильный вариант(настоящее выражние):

$$\forall a.B(A)\&\forall b.B(b)$$

5.2.2 Теория моделей

Оценка формулы в исчислении предикатов:

- 1. Фиксируем D предметное множетво
- 2. Кажодму $f_i(x_1,\ldots,x_n)$ сопоставим функцию $D^n o D$
- 3. Каждому $P_j(x_1,\ldots,x_m)$ сопоставим функцию(предикат) $D^2 \to V$
- 4. Каждой x_i сопоставим элемент из D

Пример.

$$\forall x. \forall y. \ E(x,y)$$

Чтобы определить формулу сначала определим $D=\mathbb{N}$

$$E(x,y) = \begin{cases} \mathbf{M} & , x = y \\ \mathbf{\Pi} & , x \neq y \end{cases}$$

$$\bullet \ \llbracket x \rrbracket = f_{x_i}$$

•
$$\llbracket \alpha \star \beta \rrbracket$$
 — смотри ИИВ

•
$$\llbracket P_i(\Theta_1, \dots, \Theta_n) \rrbracket = f_{P_i}(\llbracket \Theta_1 \rrbracket, \dots, \llbracket \Theta_n \rrbracket)$$

•
$$[f_j(\Theta_1,\ldots,\Theta_n)] = f_{f_j}([\Theta_1],\ldots,[\Theta_n])$$

•

$$[\![\forall x.\varphi]\!] = \begin{cases} \mathbf{H} & \text{, если } [\![\varphi]\!]^{f_x = k} = \mathbf{H} \text{ при всех } k \in D \\ \mathbf{\Pi} & \text{, иначе} \end{cases}$$

•

$$[\![\exists x.\varphi]\!] = \begin{cases} \mathsf{И} &, \text{если } [\![\varphi]\!]^{f_x=k} = \mathsf{И} \text{ при некотором } k \in D \\ \mathsf{Л} &, \text{иначе} \end{cases}$$

$$\llbracket \forall x. \forall y. E(x,y) \rrbracket = \Pi$$

т.к.
$$[\![E(x,y)]\!]^{x:=1,\ y:=2}=\Pi$$

Пример.

$$\forall \left[arepsilon > 0 \right] \ \exists N \ \forall \left[\left[n \right] > \left[N \right] \right] \ \left[\left[\left| \mathbf{a}_n - a \right| \right] < \left[arepsilon \right]$$

Синим отмечены функциональные конструкции(термы), зеленым предикатные

$$\forall \varepsilon. (\varepsilon > 0) \to \exists N. \forall n. (n > N) \to (|a_n - a| < \varepsilon)$$

Обозначим:

•
$$(>)(a,b) = G(a,b)$$
 — предикат

$$\bullet \mid \bullet \mid (a) = m_{\mid}(a)$$

•
$$(-)(a,b) = m_{-}(a,b)$$

•
$$0() = m_0$$

•
$$a_{\bullet}(n) = m_a(n)$$

$$\forall e. \boxed{\mathbf{G}([e], [m_0])} \rightarrow \exists n_0. \forall n. \boxed{\mathbf{G}(\mathbf{n}, \mathbf{n}_0)} \rightarrow \boxed{\mathbf{G}\left(\mathbf{e}, \boxed{\mathbf{m}_{|}\left(m_{-}\left(m_a(n), a\right)\right)}\right)}$$

5.2.3 Теория доказательств

Все аксимомы И.В + М.Р.

(**cxema 11**)
$$(\forall x.\varphi) \rightarrow \varphi[x := \Theta]$$

(схема 12)
$$\varphi[x := \Theta] \to \exists x. \varphi$$

Если Θ свободен для подстановки вместо x в φ .

Определение. Свободен для подстановки — никакое свободное вхождение x в Θ не станет связанным

 Π ример.

```
int y;
int f(int x) {
    x = y;
}
```

Заменим у := х. Код сломается, т.к. у нас нет свобод для подстановки

(Правило ∀)

$$\frac{\varphi \to \psi}{\varphi \to \forall x.\psi}$$

(Правило ∃)

$$\frac{\psi \to \varphi}{(\exists x.\psi) \to \varphi}$$

В обоих правилах x не входит свободно в φ

 Π ример.

$$\frac{x=5\rightarrow x^2=25}{x=5\rightarrow \forall x.x^2=25}$$

Между x и x^2 была связь, мы ее разрушили. Нарушено ограничение $\Pi pumep$.

$$\exists y.x = y$$

$$\forall x. \exists y.x = y \rightarrow \exists y.y + 1 = y$$

Делаем замену $\mathbf{x}:=\mathbf{y+1}$. Нарушено требование свобод для подстановки. y входит в область действия квантора \exists и поэтому свободная переменная x стала связанная.

6.1 Исчисление предикатов

6.1.1 Расставление скобок

Кванторы имеют наименьший приоритет $\Pi pumep$.

$$\forall x. A \& B \& y. C \& D \lor \exists z. E$$
$$(\forall x. (A \& B \& \forall y. (C \& D \lor \exists z. (E))))$$

Еще раз про правила только со скобками

1.

$$\frac{\varphi \to \psi}{(\exists . \varphi) \to \psi}$$

2.

$$\frac{\psi \to \varphi}{\psi \to (\forall x.\varphi)}$$

Пример.

$$\frac{\varphi \to \psi}{\exists x. (\varphi \to \psi)}$$

— можно доказать, но это не правило вывода для \exists

Определение. α_1,\ldots,α_n — доказательство

- ullet если $lpha_i$ аксимома
- либо существует j, k < i, что $\alpha_k = \alpha_j \to \alpha_i$
- либо существует $\alpha_j: \ \alpha_j = \varphi \to \psi$ и $\alpha_i = (\exists x. \varphi) \to \psi$ причем x не входит свободно в ψ
- либо существует $j:\alpha_j=\psi \to \varphi$ и $\alpha_i=\psi \to \forall x.\varphi$ причем x не входит свободно в ψ

6.1.2 Вхождение

Пример.

$$(P(\underset{1}{x}) \vee Q(\underset{2}{x})) \rightarrow (R(\underset{3}{x}) \& (\underbrace{\forall x. P_{1}(\underset{5}{x})}_{\text{область } \forall \text{ по } x}))$$

1, 2, 3 — свободные, 5 — связанное, по пермененной 4

Пример.

$$\underbrace{\forall x. \forall y. \forall x. \forall y. \forall x. P(x)}_{\text{область } \forall \text{ по } x}$$

Здесь x в P(x) связано. x не входит свободно в эту формулу, потому что нет свободных вхождений

Определение. Переменная x входит свободно если существует свободное вхождение

Определение. Вхождение свободно, если не связано

Можно относится к свободно входящим перменным как с перменным из библиотеки, т.е. мы не имеем права их переименовывать

Пример. Некорректная формула

$$\alpha_1 \ x = 0 \rightarrow x = 0$$

$$\alpha_2 \ (\exists x.x = 0) \to (x = 0)$$
 — не доказано

$$\alpha_2'$$
 ($\exists t.x=0$) \rightarrow ($x=0$) — (правило \exists)

Пример.

$$(n) \ x = 0 \to y = 0$$
 — откуда то

$$(n+1) \ (\exists x.x = 0) \to (y=0) - (\text{правило } \exists)$$

6.1.3 Свободные подстановки

Определение. Θ свободен для подстановки вместо x в φ , если никакая свободная перменная в Θ не станет связанной в $\varphi[x:=\Theta]$

Определение. $\varphi[x:=\Theta]$ — "Заменить все свободные вхождения х в φ на Θ "

Пример.

$$(\forall x. \forall y. \forall x. P(x))[x := y] \equiv \forall x. \forall y. \forall x. P(x)$$

 Πp имеp.

$$(P(x) \lor \forall x.P(x))[x := y] \equiv P(y) \lor \forall x.P(x)$$

Пример.

$$(\forall y.x = y) \ [x := \underbrace{y}_{\equiv \Theta}] \equiv \forall y.y = y$$

 $FV(\Theta) = \{y\}$ — свободные перменные в Θ . Вхождение y с номером 1 стало связанным $\Pi pumep$.

$$P(x)\&\forall y.x = y \ [x := y + z] \equiv P(y + z)\&\forall y.y + z = y$$

Здесь при подстановке вхождение y с номером 1 стало связанным. x — библиотечная функция, переименовали x во что-то другое.

6.1.4 Пример доказательства

Лемма 5. $\Pi ycmb \vdash \alpha$. $Tor \partial a \vdash \forall x.\alpha$

Доказательство.

1. Т.к. $\vdash \alpha$, то существует $\gamma_1, \dots, \gamma_2 : \gamma_n = \alpha$

6.1.5 Теорема о дедукции

Теорема 6.1.1. Пусть задана $\Gamma, \ \alpha, \beta$

- 1. Если $\Gamma, \alpha \vdash \beta$, то $\Gamma \vdash \alpha \to \beta$, при условии, если в доказательстве $\Gamma, \alpha \vdash \beta$ не применялись правила для \forall, \exists по перменным, входяшим свободно в α
- 2. Если $\Gamma \vdash \alpha \rightarrow \beta$, то $\Gamma, \alpha \vdash \beta$

- $\Gamma \vDash \alpha \alpha$ следует из Γ при всех оценках, что все $\gamma \in \Gamma$ $[\![\gamma]\!] = \mathbb{N}$, выполнено $[\![\alpha]\!] = \mathbb{N}$
- $x = 0 \vdash \forall x.x = 0$
- $x = 0 \not\models \forall x.x = 0$

Определение (Условие для корректности). Правила для кванторов по свободным перменным из Γ запрещены.

Тогда $\Gamma \vdash \alpha$ влечет $\Gamma \vDash \alpha$

7.1 Полнота исчесления предикатов

Определение. Γ — **непротиворечивое** множество формул, если $\Gamma \not\vdash \alpha \& \neg \alpha$ ни при каком α *Пример.* Непротиворечивые:

- Ø
- \bullet $A \lor \neg A$

Противоречивые:

A&¬A

Пример. $\{A\}, \{0=0\}$

Определение. Моделью для непротиворечивого множества замкнутых бескванторных формул Γ — такая модель, что каждая формула из Γ оценивается в Π

Определение. Полное непротиворечивое замкнутых бескванторных формул — такое, что для каждой замкнутой бескванторной формулы α : либо $\alpha \in \Gamma$, либо $\neg \alpha \in \Gamma$

Обозначение. з.б. — замкнутая бескванторная. **непр. мн** — непротиворечивое множество

Теорема 7.1.1. Если Γ — непротиворечивое множество з.б. фомул и α — з.б. формула. То либо $\Gamma \cup \{\alpha\}$, либо $\Gamma \cup \{\neg \alpha\}$ — непр. мн. з.б. формул

Доказательство. Пусть и $\Gamma \cup \{\alpha\}$ и $\Gamma \cup \{\neg \alpha\}$ Доделать

Теорема 7.1.2. Если Γ — непр. мн. з.б. фомул, то можно построить Δ — полное непр. мн. з.б. формул. $\Gamma \subseteq \Delta$ и в языке — счетное количество формул

Определение. $\varphi_1, \varphi_2, \varphi_3, \ldots$ формулы з.б.

- $\Gamma_0 = \Gamma$
- $\Gamma_1 = \Gamma_0 \cup \{\varphi_1\}$ либо $\Gamma_0 \cup \{\neg \varphi_1\}$ смотря что непротиворечивое
- $\Gamma_2 = \Gamma_1 \cup \{\varphi_2\}$ либо $\Gamma_1 \cup \{\neg \varphi_2\}$

$$\Gamma^* = \bigcup_i \Gamma_i$$

Свойство 2. Γ^* — полное

Свойство 3. Γ^* — непротиворечивое

Доказательство. Пусть $\Gamma^* \vdash \beta \& \neg \beta$

Конечное доказательство $\gamma_1, \ldots \gamma_n$, часть из которых гипотезы: $\gamma_1, \ldots, \gamma_k$ $\gamma_i \in \Gamma_{R_i}$. Возьмем $\Gamma_{\max R_i}$. Правда ли $\Gamma_{\max R_i} \vdash B \& \neg B$

Теорема 7.1.3. Любое полное непротиворечивое множество замкнутых бескванторных формул Γ имеет модель, т.е. существует оценка []: если $\gamma \in \Gamma$, то $[\![\gamma]\!] = M$

Доказательство. D — все записи из функциональных символов.

- $\llbracket f_0^n \rrbracket$ константа \Rightarrow " f_0^n "
- $[f_k^m(\Theta_1, \dots, \Theta_k)] \Rightarrow "f_k^m(" + [\Theta_1]] + ", " + \dots + ", " + [\Theta_k]] + ")"$

•
$$[\![P(\Theta_1,\ldots,\Theta_n)]\!] = egin{cases} \mathbb{M} & P(\Theta_1,\ldots,\Theta_n) \in \Gamma \\ \mathbb{\Pi} & \text{иначе} \end{cases}$$

• свободные переменные: Ø

Так построенные модель — модель для Γ . Индукция по количеству связок. База очев.

Переход $\alpha \& \beta$. При этом

- 1. Если $\alpha, \beta \in \Gamma$ $\llbracket \alpha \rrbracket = И$ и $\llbracket \beta \rrbracket = И$ то $\alpha \& \beta \in \Gamma$
- 2. Если $\alpha, \beta \notin \Gamma$ $\llbracket \alpha \rrbracket \neq И$ или $\llbracket \beta \rrbracket \neq И$ то $\alpha \& \beta \notin \Gamma$

Аналогично для других операций

Теорема 7.1.4 (Геделя о полноте). Если Γ — полное неротиворечивое множество замкнутых (не бескванторных) фомул, то оно имеет модель

Следствие 7.1.4.1. Пусть $\models \alpha$, тогда $\vdash \alpha$

Доказательство. Пусть $\models \alpha$, но $\not\vdash \alpha$. Значит $\{\neg \alpha\}$ — непротиворечивое множество замкнутых формул. Тогда $\{\alpha\}$ или $\{\neg \alpha\}$ — непр. мн. з. ф. Пусть $\{\alpha\}$ — непр. мн. з.ф., а $\{\neg \alpha\}$ — противоречивое. При этом $\neg \alpha \vdash \beta \& \neg \beta$, $\neg \alpha \vdash \alpha$, $\beta \& \neg \beta \models \alpha$. $\neg \alpha \vdash \alpha$, $\alpha \vdash \alpha$. Значит $\vdash \alpha$

- $\Gamma \pi.м.з.ф.$
- перестроим Γ в Γ^{\triangle} п.н.м. **б.** з. ф.
- \bullet по теореме о существование модели: M^{\triangle} модель для F^{\triangle}
- ullet покажем, что M^{\triangle} модель для $\Gamma-M$

 $\Gamma_0 = \Gamma$, где все формулы — в предварительной нормальной форме

Определение. Предваренная нормальная форма — формула, где $\forall \exists \forall \dots (\tau), \tau$ — формула без кванторов

Теорема 7.1.5. Если φ — формула, то существует ψ — в п.ф., то $\varphi \to \psi$ и $\psi \to \varphi$

Доказательство. $\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_1 \subseteq \cdots \subseteq \Gamma^*$. $\Gamma^* = \bigcup_i \Gamma_i$

Переход: $\Gamma_i \to \Gamma_{i+1}$

Рассмторим: $\varphi_i \in \Gamma_i$

Построим семейство ф.с. d_i^j — новые перменные

- 1. φ_j без кванторов не трогаем
- 2. $\varphi_j \equiv \forall x.\psi$ добавим все формулы вида $\psi[x:=\Theta]$, где Θ терм, состоящий из f: $d_0^e, d_1^{e'}\dots, d_{i-1}^{e'\cdots'}$
- 3. $\varphi_i \equiv \exists x. \psi$ добавим $\psi[x := d_i^j]$

 $\Gamma_{i+1} = \Gamma_i \cup \{$ все добавленные формулы $\}$ — счетное количество

Теорема 7.1.6. Если Γ_i — непротиворечиво, то Γ_{i+1} — непротиворечиво

Теорема 7.1.7. $\Gamma * -$ непротиворечиво

 $\mathit{Cnedcmeue}$ 7.1.7.2. $\Gamma^{\triangle} = \Gamma*$ без формул с \forall,\exists

8.1 Исчисление предиктов

Теорема 8.1.1 (Геделя о полноте ИП). У любого н.м.з.ф. (непротиворечивого множества замкнутых формул) ИП существует модель

Теорема 8.1.2. Если формула φ — замкнутая формула ИП

Доказательство. См. ДЗ

Примечание. Рассмотрим Γ — н.м.з.ф. — рассмотрим Γ' — полное расширение Γ . Пусть φ — фомула из Γ' , тогда найдется $\psi \in \Gamma'$, что ψ — с поверхностными кванторами и $\vdash \varphi \to \psi$, $\vdash \psi \to \varphi$

Доказательство теоремы Геделя о полноте ИП. Рассмотрим множество констант (нуль местных функциональных символов) — d_i^i . Построим $\{\Gamma_j\}$:

$$\Gamma' = \Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \subseteq \cdots \subseteq \Gamma_i \subseteq \cdots$$

Переход $\Gamma_j\Rightarrow\Gamma_{j+1}$: рассм
торим все формулы из Γ_j : $\{\gamma_1,\gamma_2,\gamma_3,\dots\}$

- 1. γ_i формула без кванторов оставим на месте
- 2. $\gamma_i \equiv \forall x.\varphi$ добваим к Γ_{j+1} все формулы вида $\varphi[x:=\Theta]$, где Θ составлен из всех ф.с. ИП и констант вида d_1^k,\dots,d_j^k
- 3. $\gamma_i \equiv \exists x. \varphi$ добавим одну формулу $\varphi[x := d^i_{j+1}]$

Утв. 1 Γ_{i+1} непр., если Γ_i — непр.

Докажем от противного. $\Gamma_{i+1} \vdash \beta \& \neg \beta$

$$\Gamma_i, \gamma_1, \dots, \gamma_n \vdash \beta \& \neg \beta \quad \gamma_i \in \Gamma_{i+1} \setminus \Gamma_i$$

$$\Gamma_i \vdash \gamma_1 \to \gamma_2 \to \cdots \to \gamma_n \to \beta \& \neg \beta$$

 γ_i — замкнутое \implies т. о дедукции. Докажем что $\Gamma_i \vdash \beta \& \neg \beta$ по индукции.

$$\Gamma_i \vdash \gamma \to \varepsilon$$

Покажем $\Gamma_i \vdash \varepsilon$, т.е. γ получен из $\forall x.\xi$ или $\forall x.\xi \in \Gamma_i$

 $(\forall x.\xi)$ Заметим, что $\Gamma_i \vdash \forall x.\xi$

$$\begin{array}{ll} \vdots & \text{по условию} \\ \gamma \to \varepsilon & \text{по построению } \Gamma_{i+1} \\ \forall x.\xi \to (\underbrace{\xi[x:=\Theta]}_{\gamma}) & (\text{акс. 11}) \\ \\ (\forall x.\xi) \to \varepsilon & \begin{vmatrix} \eta \to \xi \\ \xi \to \kappa \end{vmatrix} \Longrightarrow \eta \to \kappa \\ \forall x.\xi \\ \varepsilon & (\text{M.P.}) \\ \end{array}$$

 $(\exists x.\xi)$

$$\Gamma_i \vdash \overbrace{\xi[x := d_{i+1}^k]}^{\gamma} \to \varepsilon$$

Заметим, что d_{i+1}^k не входит в ε . Заменим все d_{i+1}^k в доказательстве на y — новая перменная

$$\begin{split} \Gamma_i \vdash \xi[x := y] \to \varepsilon \\ \exists y. \xi[x := y] \to \varepsilon \\ (\exists x. \xi x) \to (\exists t. \xi[x := y]) \\ (\exists x. \xi) \to \varepsilon \\ \exists x. \xi \end{split}$$

Исправить

Утв. 2 Γ^* — непр. $\Gamma_0 \vdash \gamma_1 \to \cdots \to \gamma_n \to \beta \& \neg \beta$

$$\Gamma_{\max_i(0..n)} \vdash \beta \& \neg \beta$$

Значит Γ_{\max} — противоречиво, $\Gamma^{\triangle}=\Gamma^*$ без кванторов Значит у Γ^{\triangle} есть модель M

Утв. 3 $\gamma \in \Gamma'$, то $[\![\gamma]\!]_M = M$

Индукция по количеству кванторов в γ . Рассмторим:

- 1. $\gamma \equiv \forall x.\delta$ $[\![\forall x.\delta]\!]$, если $[\![\delta]\!]^{x:=\kappa} = \mathcal{U}$, $\kappa \in D$. Рассмотри $[\![\delta]\!]^{x:=\kappa}$, $k \in D$. κ содержит константы и фс., κ осмысленно Γ_p . δ добавлена на шаге q. Рассмотрим шаг $\Gamma_{\max(p,q)} \ \forall x.\delta : \Gamma_{\max(p,q)+1}$ добавлена $\delta[x:=\kappa]$. $\delta[x:=\kappa]$ меньше на 1 квантор, $[\![\delta[x:=k]\!]\!] = \mathcal{U}$
- 2. $\gamma \equiv \exists x.\delta$ аналогично

Теорема 8.1.3. ИП неразрешимо

Определение. Язык — множество слов. Язык $\mathcal L$ разрешим, если существует A — алгоритм, что по слову w:

A(w) — останавливается в '1', если $w \in \mathcal{L}$ и '0', если $w \notin \mathcal{L}$

Примечание. Проблема останова: не существует алгоритма, который по программе для машина Тьюринга ответит, остановится она или нет.

Пусть \mathcal{L}' — язык всех останов программы для машины Тьюринга. \mathcal{L}' неразрешим

 Π римечание. [a, b, c, d, e] = cons(a, cons(b, cons(c, cons(d, cons(e, nil))))) A — алфавит ленты

$$\left. egin{aligned} S_x, & x \in A \\ e-\mathrm{nil} \end{array}
ight.
ight. - 0$$
-местные функциональные символы

C(a,b) — 2-местные функциональные символы

 $b_s, s \in \mathcal{S}$ — множество всех состояний, b_0 — начальное состояние.

$$C(s_c, C(s_b, C(s_a, e)))$$
 $C(s_d, C(s_e, e))$

Заведем предикат, которых отвечает было ли состояние в процессе. Начальное состояние — машина Тьюринга запущена на строке α :

$$R(\alpha, e, b_0)$$

Переход:

$$(s_x, b_s) \to (s_y, b_t, \leftrightarrow)$$

 $(s_x, b_s) \to (s_y, b_t, \leftarrow)$

Если пермещение законно, то можем построить для каждого такие правила:

$$\forall z. \forall w. R(C(s_x, z), w, b_s) \to R(C(s_y, z), w, b_t)$$
$$\dots R(z, C(s_y, w), b_t)$$

Сделаем коньюнкцию вех эти правил: $R(\dots)\&R(\dots)\&\dots\&R(\dots)\to\exists z.\exists.R(z,w,b_\triangle)$ Исправить Пример.

1. $R(C(s_k,e),e,b_0)$ — доказуемо(мы так сказали) Двинем голвку вправо:

$$\forall x. \forall y. R(C(s_k, x), y, b_0) \rightarrow R(x, C(s_k, y), b_1)$$

9.1 Теория первого порядка

Определение. Теория I порядка — Исчесление предикатов + нелогические функции + предикатные символы + нелогические (математические) аксиомы.

Определение. Будем говорить, что N соответсвует **аксиоматике Пеано** если:

- \bullet задан (') : $N \to N$ инъективная функция (для разных элементов, разные значения)
- задан $0 \in N$: нет $a \in N$, что a' = 0
- если P(x) некоторое утверждение, зависящее от $x \in N$, такое, что P(0) и всегда, когда P(x), также и P(x'). Тогда P(x)

Свойство 1. 0 единственный

Доказательство. P(x) = x = 0 либо существует t: t' = x

- P(0): 0 = 0
- $P(x) \rightarrow P(x')$. Заметим, что x' не 'ноль'

P(x) выполнено при всех $x \in N$

Определение.

$$a+b = \begin{cases} a & b=0\\ (a+c)' & b=c' \end{cases}$$

Можем определить это опираясь на доказательтво

Определение.

- 1 = 0'
- 2 = 0''
- 3 = 0'''
- 4 = 0''''
- ...

Задача 1. 2+2=4

Решение.

$$2 + 2 = 0'' + 0'' = (0'' + 0')' = ((0'' + 0)')' = ((0'')')' = 0'''' = 4$$

Определение.

$$a \cdot b = \begin{cases} 0 & b = 0\\ (a \cdot c) + a & b = c' \end{cases}$$

Определение.

$$a^b = \begin{cases} 1 & b = 0\\ (a^c) \cdot a & b = c' \end{cases}$$

Свойство 1. a + 0 = 0 + a

Доказательство. P(a) = (a + 0 = 0 + a)

<u>База</u> P(0): 0+0=0+0Переход $P(x) \rightarrow P(x')$

$$x+0=0+x$$
 $x'+0\stackrel{?}{=}0+x'$
 $0+x'=(0+x)'$ определение +
 $(0+x)'=(x+0)'$ предположение
 $(x+0)'=x'$ определение +
 $x'=x'+0$ определение +

Свойство 2. a + b' = a' + b

Доказательство.

$$b = 0$$
 $a + 0' = a' + 0$

$$a' = (a+0)' = a+0' = a'+0 = a'$$

b = c' Есть: a + c' = a' + c. Покажем: a + c'' = a' + c'

$$(a+c')' = (a'+c)' = a'+c$$

Свойство 3. a + b = b + a

Доказательство. База b=0 — свойство

Переход $a + c'' = \overline{c'' + a}$, если a + c' = c' + a

$$a + c'' = (a + c')' = (c' + a)' = c' + a' = c'' + a$$

9.1.1 Формальная арифметика

Определение. Исчесление предикатов:

- Функциональные символы:
 - -0-0-местный
 - (') 1-местный
 - $-(\cdot)-2$ -местный
 - -(+)-2-местный
- (=) 2-местный предикатный символ

Аксимомы:

- 1. $a = b \to a' = b'$
- 2. $a = b \rightarrow a = c \rightarrow b = c$
- 3. $a' = b' \to a = b$
- 4. $\neg a' = 0$
- 5. a + b' = (a + b)'
- 6. a + 0 = a
- 7. $a \cdot 0 = 0$
- 8. $a \cdot b' = a \cdot b + a$
- 9. Схема аксиом индукции:

$$(\psi[x := 0])\&(\forall x.\psi \to (\psi[x := x'])) \to \psi$$

x входит свободно в ψ

Свойство 1.

$$((a+0=a) \to (a+0=a) \to (a=a))$$

Доказательство.

$$\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c$$

$$(\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c) \rightarrow \forall b. \forall c. (a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)$$

$$\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c$$

$$(\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c) \rightarrow \forall c. (a + 0 = a \rightarrow a + 0 = c \rightarrow a = c)$$

$$\forall c. a + 0 = a \rightarrow a + 0 = c \rightarrow a = c$$

$$(\forall c. a + 0 = a \rightarrow a + 0 = c \rightarrow a = c) \rightarrow a + 0 = a \rightarrow a + 0 = a \rightarrow a = a$$

$$a + 0 = a \rightarrow a = a$$

$$a + 0 = a$$

$$a + 0 = a \rightarrow a = a$$

$$\begin{aligned} a &= a \\ \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c \\ (0 &= 0 \rightarrow 0 = 0 \rightarrow 0 = 0) \\ (\forall b. \forall c. a = b \rightarrow a = c \ tob = c) \rightarrow (0 = 0 \rightarrow 0 = 0 \rightarrow 0 = 0) \rightarrow \phi \end{aligned}$$

Исправить

Определение. $\exists ! x. \varphi(x) \equiv (\exists x. \varphi(x)) \& \forall p. \forall q. \varphi(p) \& \varphi(q) \to p = q$ Можно также записать $\exists ! x. \neg \exists s. s' = x$ или $(\forall q. (\exists x. x' = q) \lor q = 0)$

Определение. $a \le b$ — сокращение для $\exists n.a + n = b$

Определение.

$$\overline{n} = 0^{(n)}
0^{(n)} = \begin{cases}
0 & n = 0 \\
0^{(n-1)'} & n > 0
\end{cases}$$

9.1.2 Выразимость отношений и представимость функций в формальной арифметике

Определение. $W \subseteq \mathbb{N}_0^n$. W — выразимое в формальной арифметике. отношение, если существует формула ω со свободными переменными x_1, \ldots, x_n . Пусть $k_1, \ldots, k_n \in \mathbb{N}$

•
$$(k_1,\ldots,k_n)\in W,$$
 тогда $\vdash \omega[x_1:=\overline{k_1},\ldots,x_n:=\overline{k_n}]$

•
$$(k_1,\ldots,k_n) \not\in W$$
, тогда $\vdash \neg \omega[x_1:=\overline{k_1},\ldots,x_n:=\overline{k_n}]$

$$\omega[x_1 := \Theta_1, \dots, x_n := \Theta_n] \equiv \omega(\Theta_1, \dots, \Theta_n)$$

Определение. $f: \mathbb{N}^n \to \mathbb{N}$ — представим в формальной арифметике, если найдется φ — фомула с n+1 свободными переменными $k_1, \dots, k_{n+1} \in \mathbb{N}$

•
$$f(k_1,\ldots,k_n)=k_{n+1}$$
, to $\vdash \varphi(\overline{k_1},\ldots,\overline{k_{n+1}})$

•
$$\vdash \exists ! x. \varphi(\overline{k_1}, \dots, \overline{k_n}, x)$$

10.1 Рекурсивные функции

Определение. $f: \mathbb{N}^n \to \mathbb{N}$

1.
$$Z: \mathbb{N} \to \mathbb{N}$$

 $Z(x) = 0$

$$2. \ N: \mathbb{N} \to \mathbb{N}$$
$$N(x) = x + 1$$

3.
$$S_k: \mathbb{N}^m \to \mathbb{N}$$

•
$$f_1, \ldots, f_k : \mathbb{N}^m \to \mathbb{N}$$

•
$$g: \mathbb{N}^k \to \mathbb{N}$$

$$S_k \langle g, f_1, \dots, f_k \rangle (x_1, \dots, x_m) = g(f_1(\overline{x}), f_2(\overline{x}), \dots, f_k(\overline{x}))$$

, где
$$\overline{x} = x_1, \ldots, x_m$$

4.
$$P_k^l: \mathbb{N}^k \to \mathbb{N}, \ l \leq k$$

$$P_k^l(x_1,\ldots,x_k)=x_l$$

5.
$$R\left\langle f,g\right\rangle :\mathbb{N}^{m+1}\rightarrow\mathbb{N}$$
 — примитивная рекурсия

- $f: \mathbb{N}^m \to \mathbb{N}$
- $g: \mathbb{N}^{m+2} \to \mathbb{N}$

$$R \langle f, g \rangle (y, x_1, \dots, x_m) = \begin{cases} f(x_1, \dots, x_m) & y = 0 \\ g(y - 1, R \langle f, g \rangle (y - 1, x_1, \dots, x_m), x_1, \dots, x_m) & y > 0 \end{cases}$$

Пример.

$$R \langle f, g \rangle (0, x) = f(x)$$

$$R \langle f, g \rangle (1, x) = g(0, f(x), x)$$

$$R \langle f, g \rangle (2, x) = g(1, g(0, f(x), x), x)$$

Определение. $f:\mathbb{N}^m \to \mathbb{N}$ — **примитивно-рекурсивная**, если найдется g — выражение f через примитивы Z,N,S,P,R, т.е. $f(x_1,\ldots,x_n)=g(x_1,\ldots,x_n)$

Пример.

• $1 = S\langle N, Z \rangle$

•
$$(+2) = S\langle N, N \rangle$$

$$S\left\langle N, N \atop g, f \right\rangle(x) = g(f(x)) = N(N(x)) = x + 2$$

- $(+3) = S\langle N, (+2) \rangle$
- $(\times 2)_a = R \langle P_1^1, S \langle N, P_3^2 \rangle \rangle$

$$f(a,b) = \begin{cases} b & a = 0\\ f(a-1,b+1) & a > 0 \end{cases}$$

— это почти определение +, т.е. $f(x,x) = x \cdot 2$

$$(\times 2)_a = \begin{cases} P_1^1(a) & y = 0 \\ b+1 & y > 0 \end{cases}$$
 Исправить

, где a- счетчик, b- предыдущее значение, c-x

•
$$(\times 2) = S \langle (\times 2)_a, P_1^1, P_1^1 \rangle$$

Определение.

6. $M\langle f \rangle: \mathbb{N}^m \to \mathbb{N}$ — минимизация

• $f: \mathbb{N}^{m+1} \to \mathbb{N}$

$$M\langle f\rangle(x_1,\ldots,x_m)=y$$

— минимальный у

$$f(y, x_1, \dots, x_m) = 0$$

Если $f(y, x_1, ..., x_m) > 0$ при всех y, то результат не определен

Теорема 10.1.1. $(+), (\cdot), (x^y), (:), (\sqrt{)},$ деление с остатком — примитивно-рекурсивные функции

Лемма 6. $p_1, p_2, \ldots - npocmые$ числа.

 $p(i): \mathbb{N} \to \mathbb{N}, \ p(i)-p_i - примитивно-рекурсивная функция$

Определение. $\operatorname{plog}_n k = \max t : n^t | k$ — примитивно-рекурсивная функция

Пример.

- $plog_5 120 = 1$
- $plog_2 120 = 3$

10.1.1 Функция Аккермана

$$A(m,n) = \begin{cases} n+1 & m=0\\ A(m-1,1) & m>0, \ n=0\\ A(m-1,A(m,n-1)) & m>0, n>0 \end{cases}$$

Лемма 7. A(m,n) — не примитивно-рекурсивная

Можно сказать что если есть текст длинны n, которые выводит текст длинны k, то текст длинны n+1 не может выводить текст больше чем k^k Исправить

10.2 Связь с формальной арифметикой

Теорема 10.2.1. f — рекурсивная функция, тогда f представима в формальной арифметике

Теорема 10.2.2. Если f представима в формальной арифметике, то она рекурсивна

Примечание.

- $\vdash \varphi$ доказательство (φ) в ΦA
- $\delta_1, \ldots, \delta_n \equiv \varphi$ доказательство
- \bullet C функция(рекурсивная), превращающая доказательство в ΦA

$$C(p,x) \stackrel{=}{=} 0 \quad$$
 если доказательство корректно если не доказуемо

, где p — запись доказательства, x — формула

• Формула $\delta(p, x, y)$ – доказательство

Доделать

Примечание. Проблема останова

$$P(p,x) = \begin{cases} 0, \text{если } p(x) \text{ останавливается} \\ 1, \text{если не останавливается} \end{cases}$$

$$Q(p,x) = \text{if } P(p,p) = 1 \text{ then } 0 \text{ else while true do;}$$

Теорема 10.2.3. Примитивы Z, N, S, P представимы в ΦA

Доказательство. Аргументы: x_1, \ldots, x_n

1.
$$Z(x): \mathbb{N} \to \mathbb{N}$$

$$\xi := x_1 = x_1 \& x_2 = 0$$

2.
$$N(x): \mathbb{N} \to \mathbb{N}$$

$$\nu \coloneqq x_2 = x_1'$$

3.
$$P_k^l(x,\ldots,x_k):\mathbb{N}^k\to\mathbb{N}$$

$$\pi_k^l := x_1 = x_1 \& x_2 = x_2 \& \dots \& x_l = x_{k+1} \& \dots \& x_k = x_k$$

$$\left(\bigotimes_{i \neq l} x_i = x_i\right) \& x_l = x_{k+1}$$

4.
$$S\left\langle g, f_1, \dots, f_k \right\rangle$$

•
$$(x_1, \ldots, x_m) = x_{m+1}$$

$$\exists r_1.\exists r_2....\exists r_k.\varphi_1(x_1,...,x_m,r_1)\&...\&\varphi_k(x_1,...,x_m,r_k)\&\gamma(r_1,...,r_k,x_{m+1})$$

Определение. β -функция Геделя

$$\beta(b, c, i) = b \operatorname{mod}(1 + c \cdot (i+1))$$

Теорема 10.2.4.

• a_0, a_1, \ldots, a_k — некоторые значения $\in \mathbb{N}$

Тогда найдутся b и c, что

$$\beta(b, c, i) = a_i$$

Доказательство. Доделать

 Π римечание. β -функция Γ еделя — представима в Φ А

$$B(b, c, i, q) = (\exists p.b = p \cdot (q + c \cdot (1 + i)) + q) \& q < b$$

 Π римечание.

• $M\langle f\rangle, f: \mathbb{N}^{m+1} \to \mathbb{N}$

$$\varphi(x_{m+1}, x_1, \dots, x_m, \overline{0}) \& \forall y.y < x_{m+1} \to \neg \varphi(y, x_1, \dots, x_m, \overline{0})$$

, где
$$(a < b) = (\exists n.a + n = b) \& \neg a = b$$

$$R \langle g, x_1, \dots, x_n \rangle = \begin{cases} f(x_1, \dots, x_n)y = 0 & y = 0 \\ g(y - 1, R(y - 1, x_1, \dots, x_n), x_1, \dots, x_n) & y > 0 \end{cases}$$

$$\exists b. \exists c. \exists f. \varphi(x_1, \ldots, x_n f) \& B(b, c, \overline{0}, f) \&$$

 $\& \forall y.y < x_{n+1} \to \exists r_y.B(b,c,y,r_y) \& \exists r_{y+1}.B(b,c,y+1,r_{y+1}) \& \gamma(y,r_y,x_1,\ldots,x_n,r_{y+1})$

ITMO y2019

11.1 Геделева нумерация

Определение. (Г●¬)

s	$\lceil S \rceil$
(3
)	5
,	7
&	9
V	11
_	13
\rightarrow	15
\forall	17
3	19
	21
f_k^n	$23 + 6 \cdot 2^n \cdot 3^k$
P_k^n	$25 + 6 \cdot 2^n \cdot 3^k$
$\overline{x_k}$	$27 + 6 \cdot 2^k$

Тогда известные функции будут:

- $(=) = P_0^2$
- $(0) = f_0^0$
- $(+) = f_0^2$
- $(\cdot) = f_1^2$
- $(') = f_0^1$

Определение. $\lceil a_0 a_1 \dots a_{n-1} \rceil = 2^{\lceil a_0 \rceil} \cdot 3^{\lceil a_1 \rceil} \cdot \dots \cdot p_n^{\lceil a_{n-1} \rceil}$

Определение. S_0 S_1 $S_2 = 2^{\lceil S_0 \rceil} \cdot 3^{\lceil S_1 \rceil} \cdot \dots \cdot p_n^{\lceil S_n \rceil}$

Примечание. p_i-i -е простое $(p_1=2)$

Пример. $\lceil a = 0 \rceil = 2^{27+6} \cdot 3^{25+6\cdot 4} \cdot 5^{23+6}$

Теорема 11.1.1. Рассмотрим функцию $\operatorname{Proof}(x,p) = \begin{cases} 1 & \text{если } p - \text{геделев номер доказательства } \chi \\ 0 & \text{иначе} \end{cases}$,

Теорема 11.1.2. Если функция представима в формальной арифметике, то она рекурсивна

Доказательство. $f:\mathbb{N}^n\to\mathbb{N}$, т.е. существует формула φ с n+1 свободными переменными x_1,\dots,x_{n+1} . Если $f(k_1,\dots,k_n)=k_{n+1}$

Ожидаем $\vdash \varphi(\overline{k_1}, \dots, \overline{k_n}, \overline{k_{n+1}})$, т.е. существует доказательство δ — последовательность $\delta_1, \dots, \delta_t$

$$\operatorname{Proof}(\lceil \varphi \overline{k_1}, \dots, \overline{k_{n+1}} \rceil, \lceil k \rceil) = 1$$

```
S\langle \operatorname{plog}_2, \\ M\langle S\langle \operatorname{Proof}, \\ S\langle \operatorname{Subst}_{n+1}, \lceil \varphi \rceil, P_{n+1}^2, P_{n+1}^3, \dots, P_{n+1}^{n+1}, S\langle \operatorname{plog}_2, P_{n+2}^1 \rangle \rangle, \\ S\langle \operatorname{plog}_3, P_{n+1}^1 \rangle \\ \rangle \\ \rangle
```

 $\Pi pumeчaнue.$ Subst — функция которая подставляет аргументы в формулу

 Π римечание. χ — формула формальной арифметики

$$W_1(\lceil\chi\rceil,\lceil p\rceil) = egin{cases} 0 & \text{если } p-\text{доказательство } \chi[x_0 \coloneqq \lceil\chi\rceil] \\ 1 & \text{иначе} \end{cases}$$

Реализация W_1 через Subst очевидна, тогда W_1 представима в формальной арифметике формулой ω_1 . $\sigma(x) = \forall p. \neg \omega_1(x,p)$ — "самоприменение x недоказуемо"

$$\vdash$$
? $\sigma(\overline{\ulcorner \sigma \urcorner})$

Определение. ω -непротиворечивость. Теория ω -непротиворечива, если для любой формулы $\varphi(x)$:

• если $\vdash \varphi(\overline{0}), \vdash \varphi(\overline{1}), \ldots$, то $\not\vdash \exists x. \neg \varphi(x)$

Лемма 8. Если теория ω -непротиворечива, то непротиворечива

Доказательство. Рассмотрим $\varphi(x) \coloneqq x = x$

$$\vdash \overline{0} = \overline{0} \quad \vdash \overline{1} = \overline{1} \quad \dots$$

T.e. $\forall \exists x. x \neq x$

Теорема 11.1.3 (Геделя о неполноте арифметики №1).

- 1. Если формальная арифметика непротиворечива, то $\not\vdash \sigma(\overline{\ulcorner \sigma \urcorner})$
- 2. Если формальная арифметика ω -непротиворечива, то $\not\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$

ITMO y2019

Доказательство.

1. Пусть $\vdash \sigma(\ulcorner \sigma \urcorner)$, т.е. существует p — геделев номер доказательства

$$\vdash \sigma(\overline{\ulcorner \sigma \urcorner}) \quad \vdash \forall p. \neg \omega_1(\overline{\ulcorner \sigma \urcorner}, p)$$

С другой стороны, $W_1(\lceil \sigma \rceil, p) = 0$, т.е. $\vdash \omega_1(\overline{\lceil \sigma \rceil}, p)$

2. Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$

$$\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p) \\ \vdash \neg \omega_1(\lceil \overline{\sigma} \rceil, \overline{0}) \\ \vdash \neg \omega_1(\lceil \overline{\sigma} \rceil, \overline{1}) \\ \vdash \neg \omega_1(\lceil \overline{\sigma} \rceil, \overline{2}) \\ \vdots \\ \not\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p)$$
 where $\vdash \sigma(\lceil \overline{\sigma} \rceil)$

Следствие 11.1.3.3. Формальная арифметика со стандартной интерпретацией неполна

Доказательство. Доделать

Теорема 11.1.4 (Геделя о неполноте арифметики №1 в форме Россера).

$$W_2(x,p) = egin{cases} 0 & \text{если } p - \text{доказательство } \neg x(\cdot x \cdot) \\ 1 & \text{иначе} \end{cases}$$

 ω_2 — формула соответствующая W_2

$$\rho(x) = \forall p.\omega_1(x,p) \rightarrow \exists q.q < p\&\omega_2(x,q)$$

- 1. Если формальная арифметика непротиворечива, то $\not\vdash \rho(\overline{\ulcorner \rho \urcorner})$
- 2. Если формальная арифметика непротиворечива, то $\forall \neg \rho(\overline{\lceil \rho \rceil})$

Доделать

Определение.

Consis
$$\equiv \forall p. \neg \pi(\overline{1} = 0, p)$$

 π — формула соответствующая Proof(x,p), т.е. p — доказательство x

Теорема 11.1.5 (Геделя о неполноте арифметики №2).

$$\vdash \text{Consis} \to \sigma(\overline{\ulcorner \sigma \urcorner})$$

Т.е. если докажем, что если формальная арифметика непротиворечива, то автоматически $\sigma(\overline{\ulcorner \sigma \urcorner})$, т.е. ΦA противоречива

Схема. Прочтем что написано в теореме: $\sigma(\lceil \overline{\sigma} \rceil)$ раскрывается в $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$, т.е. если формальная арифметика непротиворечива, то не существует p, который доказывает $\sigma(\lceil \overline{\sigma} \rceil)$, а это в точности утверждение теоремы Геделя о неполноте №1. Т.е. эта теорема — формализация теоремы Геделя о неполноте №1.

Следствие 11.1.5.4. Никакая теория, содержащая формальную арифметику, не может доказать свою непротиворечивость

12.1 Теория множеств

Определение. Теория множеств — теория первого порядка с нелогическим предикатом 'принадлежность' (\in) и следующими аксиомами и схемами аксиом.

Определение. В – бинарное отношение на X: $B \subseteq X^2$

$$\begin{split} \langle a,b\rangle &= \{\{a\},\{a,b\}\} \\ \text{snd}\, \langle a,b\rangle &= \bigcup \left(\bigcup \langle a,b\rangle \setminus \bigcap \langle a,b\rangle \right) = \{b\} \\ \text{fst}\, \langle a,b\rangle &= \bigcup \left(\bigcap \langle a,b\rangle \right) = \{a\} \end{split}$$

Определение. $a \subseteq b$, если $\forall x.x \in a \rightarrow x \in b$

Примечание. Что такое равенство?

- Duck typing: принцип Лейбница (неразличимость) A=B, если для любого P $P(A)\leftrightarrow P(B)$ $a\leftrightarrow b,$ если $(a\to b)\&(b\to a)$
- Определение равенства как структур в С (принцип объемности) A и B состоят из одинаковых элементов

Определение. a=b, если $a\subseteq b\&b\subseteq a$

Примечание. Пустое множество имеет тип 0, множество с одним элементов имеет тип 1 и т.д. Запретим запросы 'принадлежит' на одинаковых типах

Определение. "Предикат" P(x) — множество $\{x|P(x)\}$

Аксиома 1 (равенства). Равные множества содержатся в одних и тех же множествах

$$\forall a. \forall b. \forall c. a = b \& a \in c \rightarrow b \in c$$

Аксиома 2 (пустого множества). *Существует* \varnothing : $\forall x. \neg x \in \varnothing$

Аксиома 3 (пары). *Если* $a \neq b$, то $\{a, b\}$ — множество

$$\forall a. \forall b. a \neq b \rightarrow \exists p. a \in p \& b \in p \& \forall t. t \in p \rightarrow t = a \lor t = b$$

Аксиома 4 (объединения). Если x — непустое множество, то $\bigcup x$ — множество

$$\forall x. (\exists y. y \in x) \rightarrow \exists p. \forall y. y \in p \leftrightarrow \exists s. y \in s \& s \in x$$

Пример.

Почему $2 \in p$, потому что $2 \in \underbrace{\{2,3\}}_{}, \ \{2,3\} \in x$

Аксиома 5 (Степени). Для множества x, существует $\mathcal{P}(x)$ — множество всех подмножеств

$$\forall x. \exists p. \forall y. y \in p \leftrightarrow y \subseteq x$$

Пример.

$$\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$$
$$\mathcal{P}(\{\{4\}\}) = \{\emptyset, \{\{4\}\}\}$$

Аксиома 6 (Схема аксиом выделения). Если a- множество, $\varphi(x)-$ формула, в которую не входит свободно $b,\ mo\ \{x\,|\,x\in a\&\varphi(x)\}$ — множество

$$\forall x. \exists b. \forall y. y \in b \leftrightarrow y \in x \& \varphi(y)$$

Аксиома 7 (Аксиома бесконечности). Существуют множества N, такие, что

$$\varnothing \in N\&\forall x.x \in N \to x \cup \{x\} \in N$$

Теорема 12.1.1. Если x — множество, то $\{x\}$ — множество

$$\exists t. a \in t \leftrightarrow a = x$$

Доказательство.

- $x = \emptyset$, тогда $t \coloneqq \mathcal{P}(x), \, \mathcal{P}(\emptyset) = \emptyset$
- $x \neq \varnothing$, тогда $s \coloneqq \{x,\varnothing\}$ аксиома пары, $t \coloneqq \{z \big| z \in s\&z \neq \varnothing\}$

Теорема 12.1.2. a, b — множества, то $a \cup b$ — множество

ITMO y2019

Page 43 of 49

Доказательство.

- a=b, тогда $a\cup b=a$ по теореме
- $a \neq b$, тогда $a \cup b = \bigcup \{a,b\}$ по аксиоме

Обозначение. a, b — множества, $a \cup b$ = такое c

$$a \subseteq c\&b \subseteq c\&\forall t.t \in c \to t \in a \lor t \in b$$

Определение. $a' = a \cup \{a\}$

Определение. Ординальные числа

- $\overline{0} = \emptyset$
- $\overline{1} = \emptyset' = \{\emptyset\}$
- $\overline{2} = \varnothing'' = \{\varnothing\}' = \{\varnothing, \{\varnothing\}\}\$
- ...

Определение. Множество *S* **транзитивно**, если

$$\forall a. \forall b. a \in b \& b \in S \rightarrow a \in S$$

Определение. Множество S вполне упорядочено отношением \in , если

- 1. $\forall a. \forall b. a \neq b \& a \in S \& b \in S \rightarrow a \in b \lor b \in a$ линейный
- 2. $\forall t.t \subseteq S \to \exists a.a \in t \& \forall b.b \in t \to b = a \lor a \in b$ в любом подмножестве есть наименьший элемент

Определение. Ординал (Ординальное число) — вполне упорядоченное отношением \in , транзитивное множество

Определение. Предельный ординал $s \neq \varnothing$ — ординал, не имеющий предшественника

$$\forall p.p' \neq s$$

 $\Pi pu мep.$

$$\omega = \{\emptyset, 1, 2, 3, 4, \dots\}$$

Очевидно, что $\omega \subseteq N$ (из аксиомы бесконечности)

Теорема 12.1.3. ω — множество

Определение.

$$a+b=egin{cases} a&b=0\ (a+c)'&b=c'\ \sup_{c\in b}(a+c)&\mbox{ecnu }b-\mbox{ предельный} \end{cases}$$

Определение. $\sup t$ — минимальный ординал, содержащий все элементы из t

 $\Pi puмер. \ \{0,1,3\} - \text{ ординал}?$

- упорядоченный
- не транзитивный

$$\sup\{0,1,3\} = \{0,1,2,3\}$$

 Π ример.

$$1 + \omega = \sup_{c \in \omega} (1 + c) = \sup\{0 + 1, 1 + 1, 2 + 1, \dots\}$$
$$\sup\{1, 2, 3, 4, 5, \dots\} = \omega$$

Пример.

$$\omega + 1 = \omega' = \omega \cup \{\omega\} = \{0, 1, 2, 3, \dots, \omega\}$$

13.1 Аксиома выбора

Аксиома 8.

- На любом семействе непустых множеств $\{A_S\}_{S\in\mathbb{S}}$ можно определить функцию $f:\mathbb{S}\to\bigcup_S A_S$, которая по множеству возвращает его элемент
- Любое множество можно вполне упорядочить
- Для любой сюрьективной функции $f:A\to B,$ найдется частично обратная $g:B\to A,$ g(f(x))=x

Определение. Дизъюнктное семейство множество — семейство непересекающихся множеств

$$D(y): \forall p. \forall q. p \in y \& q \in y \rightarrow p \cap q = \emptyset$$

Определение. Прямое произведение дизъюнктного множества

$$X = \{t | \forall p.p \in S \leftrightarrow \exists ! c.c \in p \& c \in t\}$$

Аксиома 8. Если $D(y)\& \forall t.t \in y \to t \neq \varnothing$, то $\bigotimes y \neq \varnothing$

Теорема 13.1.1 (Диаконеску). Рассморим ZF (аксиоматика Цермело-Френкеля) поверх ИИП. Если добавим аксиому выбора то $\vdash \alpha \lor \neg \alpha$

13.2 Аксиома фундирования

Аксиома 9.

$$\forall x.x = \emptyset \lor \exists y.y \in x \& y \cap x = \emptyset$$

В каждом непустом множестве есть элемент, не пересекающийся с ним

13.3 Схема аксиом подстановки

 ${\it ZFC-Zemelo-Frenkel\ Choice}$

Аксиома 10. S — множество, f — функция, то f(S) — множество, т.е. существует формула $\varphi(x,y)$:

$$\forall x \in S. \exists ! y. \varphi(x,y)$$

Пример.

$$f(x) = \begin{cases} x & p(x) \\ \varnothing & \neg p(x) \end{cases}$$
$$\{x \in S | p(x) \} = \cup f(S)$$

13.4 Мощность множества

Определение. Равномощность |a|=|b|, если существует биекция $a \to b$

Определение. Строго большая мощность |a|>|b|, если существует $f:b\to a$ — инъекция, но не биекция

Определение. Кардинальное число t — ординал x: для всех $y \in x$: $|y| \neq |x|$

Определение. Мощность множества |x| — такое кардинальное число t, что |t| = |x|

Лемма 9. $a, b - \kappa ap \partial u$ налы u |a| = |b|, то a = b

Примечание.

- ullet $\overline{0},\overline{1},\overline{2},\overline{3},\ldots$ конечные кардиналы
- $\aleph_0 = |\omega|$
- \aleph_1 следующий кардинал за \aleph_0

Теорема 13.4.1 (Кантора). Рассмотрим S — множетво, $\mathcal{P}(S)$ — множество всех подмножеств Тогда $|\mathcal{P}(S)| > |S|$

Теорема 13.4.2 (Кантора-Бернштейна). Если a,b — множества, $f:a\to b,\ g:b\to a$ — инъективны

Тогда существует биекция $a \to b$

Теорема Левенгейма-Сголема 14.1

Определение. Мощность модели

• D — предметное множество

Тогда |D| — мощность модели

Определение. Пусть есть две модели M, M'. M' -**элементарная подмодель** M, если

- ullet предметное множество $M'\subseteq$ предметное множество M
- пусть $\vDash_M \varphi$, тогда $\vDash_{M'} \varphi$
- \bullet Все функции и предикаты M' сужение соответствующих функций и предикатов из M

Теорема 14.1.1. Пусть задана теория и модель M. Все ее формулы образуют множество TТогда для нее существует элементарная подмодель M'

$$|M'| = \max(|T|, \aleph_0)$$

Доказательство. $D_0 \subseteq D_1 \subseteq D_2 \subseteq \ldots$ предметные множества. $D_i \subseteq D$ $D' = \bigcup D_i - ??$ предметное множество

Рассмотрим все формулы из T

Определим операцию преобразования D:

$$\varphi \in T \quad \llbracket \varphi(y, x_1, \dots x_k) \rrbracket = \mathbf{M}$$

$$y, x_i \in D_n$$

Доделать

Примечание. "Парадокс" Сколема Известно, что:

- 1. вещественные числа + матан счетно-аксиоматизированны
- 2. $|\mathbb{R}| > \aleph_0$ внутри теории, на предметном языке
- 3. У вещественных чисел есть счетная модель $|\mathbb{R}| = \aleph_0$ по теореме вне теории, на метаязыке

14.2 Π po ω

Определение.

```
a\cdot b = \begin{cases} 0 & b=0\\ a\cdot c + a & b=c'\\ \sup_{c\leq b}\{a\cdot c\} & b - \text{предельный} \end{cases}
```

Примечание.

$$\sup \omega = \omega$$
$$\cup \{\omega\} = \omega + 1$$

Пример. $\omega \cdot 1 < \omega \cdot 2$

$$\omega + \omega = \sup \{\omega + 0, \omega + 1, \omega + 2, \dots \}$$

Пример. (a,b) > (c,d), если

- 1. a > c
- 2. a = c, b > d

$$(a,b) \to \omega \cdot a + b$$

- 1. $a > c \implies \omega \cdot a + b > \omega \cdot c + d$
- 2. $a = c, b > d \implies \omega \cdot a + b > \omega \cdot c + d$ Исправить

Пример.

$$\omega \cdot \omega = \sup \{ \omega \cdot 0, \omega \cdot 1, \omega \cdot 2, \omega \cdot 3, \dots \}$$

Пример.

$$\omega^{\omega} = \sup \{ \omega, \omega \cdot \omega, \omega \cdot \omega \cdot \omega, \dots \}$$

 Π ример. $\omega+1$

Исправить

Пример. $\omega + \omega + 2$

```
record:

i: integer,

case i of

0: a: integer;

1: b: integer;

2: c: boolean;

end

end
```