А. Разложение на множители

2 секунды, 256 мегабайт

Дано число. Требуется разложить его на простые множители.

Входные данные

Вводится число $n \ (2 \le n \le 10^9)$.

Выходные данные

Выведите через пробел разложение на простые множители в порядке неубывания множителей.

входные данные	
17	
выходные данные	
17	

входные данные

60

выходные данные

2 2 3 5

В. Большая проверка на простоту больших чисел

2 секунды, 64 мегабайта

Дано \boldsymbol{n} натуральных чисел $\boldsymbol{a_i}$. Определите для каждого числа, является ли оно простым.

Входные данные

Программа получает на вход число n, $1 \leq n \leq 5000$ и далее n чисел ${\it a_i}$, $1 \leq {\it a_i} \leq 10^{18}$.

Выходные данные

Если число a_i простое, программа должна вывести YES, для составного числа программа должна вывести NO.

входные	данные
4 1 5 10 239	
выходны	е данные
NO YES NO YES	

С. Китайская теорема

2 секунды, 64 мегабайта

Решите в целых числах систему уравнений

$$\begin{cases} x \equiv a \pmod{n} \\ x \equiv b \pmod{m} \end{cases}$$

Гарантируется, что n и m взаимно просты. Среди решений следует выбрать наименьшее неотрицательное число.

Входные данные

Входной файл содержит четыре целых числа a, b, n и m $(1 \le n, m \le 10^6, 0 \le a < n, 0 \le b < m).$

Выходные данные

В выходной файл выведите искомое наименьшее неотрицательное число x.

входные данные
1 0 2 3
выходные данные
3

входные данные

3 2 5 9

выходные данные

38

D. Взлом RSA

2 секунды, 64 мегабайта

В 1977 году Ronald Linn Rivest, Adi Shamir и Leonard Adleman предложили новую криптографическую схему RSA, используемую до сих пор. RSA является криптосистемой с открытым ключом: зашифровать сообщение может кто угодно, знающий общеизвестный открытый ключ, а расшифровать сообщение — только тот, кто знает специальный секретный ключ.

Желающий использовать систему RSA для получения сообщений должен сгенерировать два простых числа p и q, вычислить n=pq и сгенерировать два числа e и d такие, что

 $ed \mod (p-1)(q-1)=1$ (заметим, что $(p-1)(q-1)= \pmb{\varphi}(\pmb{n})$). Числа \pmb{n} и \pmb{e} составляют открытый ключ и являются общеизвестными. Число \pmb{d} является секретным ключом, также необходимо хранить в тайне и разложение числа \pmb{n} на простые множители, так как это позволяет вычислить секретный ключ \pmb{d} .

Сообщениями в системе RSA являются числа из \mathbb{Z}_n . Пусть M — исходное сообщение. Для его шифрования вычисляется значение $C=M^e \bmod n$ (для этого необходимо только знание открытого ключа). Полученное зашифрованное сообщение C передается по каналу связи. Для его расшифровки необходимо вычислить значение $M=C^d \bmod n$, а для этого необходимо знание секретного ключа.

Вы перехватили зашифрованное сообщение C и знаете только открытый ключ: числа n и e. "Взломайте" RSA — расшифруйте сообщение на основе только этих данных.

Входные данные

Программа получает на вход три натуральных числа: n, e, C, $n\leqslant 10^9, e\leqslant 10^9, C< n$. Числа n и e являются частью какой-то реальной схемы RSA, т.е. n является произведением двух простых и e взаимно просто с $\phi(n)$. Число C является результатом шифрования некоторого сообщения M.

Выходные данные

Выведите одно число \pmb{M} ($0 \leqslant \pmb{M} < \pmb{n}$), которое было зашифровано такой криптосхемой.

зходные данные
.43
.13
1
выходные данные
.23

входные да	нные		
9173503 3 4051753			
выходные д	анные		
111111			

Е. Перемножение полиномов

1 секунда, 256 мегабайт

Даны два полинома $A(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n$ и $B(x)=b_0+b_1x+b_2x^2+\ldots+b_nx^n$. Найдите их произведение в виде $C(x)=c_0+c_1x+c_2x^2+\ldots+c_{2n}x^{2n}$.

Входные данные

Первая строка содержит число n ($1 \le n \le 10^5$). Вторая строка содержит n+1 число — a_0, a_1, \ldots, a_n , третья строка содержит n+1 целое число — b_0, b_1, \ldots, b_n ($0 \le a_i, b_i \le 100$).

Выходные данные

Выведите 2n+1 число — c_0, c_1, \ldots, c_{2n} .

входные данные	
2 1 4 2 2 5 6	
выходные данные	
2 13 30 34 12	

F. Дуэль

2 секунды, 256 мегабайт

Двое дуэлянтов решили выбрать в качестве места проведения поединка тёмную аллею. Вдоль этой аллеи растёт n деревьев и кустов. Расстояние между соседними объектами равно одному метру. Дуэль решили проводить по следующим правилам. Некоторое дерево выбирается в качестве стартовой точки. Затем два дерева, находящихся на одинаковом расстоянии от исходного, отмечаются как места для стрельбы. Дуэлянты начинают движение от стартовой точки в противоположных направлениях. Когда соперники достигают отмеченных деревьев, они разворачиваются и начинают стрелять друг в друга.

Дана схема расположения деревьев вдоль аллеи. Требуется определить количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Входные данные

Во входном файле содержится одна строка, состоящая из символов '0' и '1' — схема аллеи. Деревья обозначаются символом '1', кусты — символом '0'. Длина строки не превосходит 100000 символов.

Выходные данные

Выведите количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

входные данные	
101010101	
выходные данные	
4	

входные данные	
101001	
выходные данные	
0	

В первом примере возможны следующие конфигурации дуэли (стартовое дерево и деревья для стрельбы выделены жирным шрифтом): 101010101, 101010101, 101010101 и 101010101.